
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nsie20

Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/nsie20

Utility analysis for SHM durations and service life
extension of welds on steel bridge deck

Lijia Long , Isaac Farreras Alcover & Sebastian Thöns

To cite this article: Lijia Long , Isaac Farreras Alcover & Sebastian Thöns (2021): Utility analysis
for SHM durations and service life extension of welds on steel bridge deck, Structure and
Infrastructure Engineering, DOI: 10.1080/15732479.2020.1866026

To link to this article:  https://doi.org/10.1080/15732479.2020.1866026

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 05 Jan 2021.

Submit your article to this journal 

Article views: 61

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=nsie20
https://www.tandfonline.com/loi/nsie20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15732479.2020.1866026
https://doi.org/10.1080/15732479.2020.1866026
https://www.tandfonline.com/action/authorSubmission?journalCode=nsie20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=nsie20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15732479.2020.1866026
https://www.tandfonline.com/doi/mlt/10.1080/15732479.2020.1866026
http://crossmark.crossref.org/dialog/?doi=10.1080/15732479.2020.1866026&domain=pdf&date_stamp=2021-01-05
http://crossmark.crossref.org/dialog/?doi=10.1080/15732479.2020.1866026&domain=pdf&date_stamp=2021-01-05


Utility analysis for SHM durations and service life extension of welds on steel
bridge deck
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ABSTRACT
Optimization of the duration of Structural Health Monitoring (SHM) campaigns is rarely performed.
This article provides a utility-based solution to posteriorly determine: i) optimal monitoring durations
and ii) the extension of the service life of the welds on a steel bridge deck. The approach is illustrated
with a case study focusing on remaining fatigue life estimation of the welds on the orthotropic steel
deck of the Great Belt Bridge, in Denmark. The identification of the optimal monitoring duration and
the decision about extending the service life of the welds are modelled by maximizing the expected
benefits and minimizing the structural risks. The results are a parametric analysis, mainly on the effect
of the target probability, benefit, cost of failure, cost of rehabilitation, cost of monitoring and discount
rate on the posterior utilities of monitoring strategies and the choice of service life considering the
risk variability and the costs and benefits models. The results show that the decision on short-term
monitoring, i.e., 1week every six months, is overall the most valued SHM strategy. In addition, it is
found that the target probability is the most sensitive parameter affecting the optimal SHM durations
and service life extension of the welds.
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1. Introduction

Many studies on Structural Health Monitoring (SHM) have
been made available in recent decades (e.g., Balageas, Fritzen,
& G€uemes, 2010; Farrar & Worden, 2007; Sohn et al., 2003).
These studies focus mainly on data acquisition, normalization,
cleaning, feature extraction and information condensation
(Farrar et al., 2003; Farrar & Worden, 2012; Sohn et al., 2003).
In the past decade, one of the main research topics in SHM
was using monitoring for the management of structures
(Okasha & Frangopol, 2012; Orcesi & Frangopol, 2011; Pozzi,
Zonta, Wang, & Chen, 2010). Among these works, Vanik et al.
presented a Bayesian probabilistic approach to SHM (Vanik,
Beck, & Au, 2000). Wenzel et al. related the life cycle manage-
ment for civil structures to SHM (Wenzel, Veit-Egerer,
Widmann, & To, 2011). Flynn and Todd (2010) developed an
approach for optimising sensor placement of a SHM system.

Herein, the optimal SHM system is the one leading to the
lowest Bayes risk (expected loss) in the context of the oper-
ational modelling of the SHM (Flynn & Todd, 2010; Todd,
Haynes, & Flynn, 2011). In continuation of research progress,
it has been gradually acknowledged that without a decision
analytical framework including the structural system perform-
ance, the SHM information cannot be optimally utilized for
the structural integrity management. Pozzi & Der Kiureghian,
Faber & Th€ons, and Straub proposed and worked on utilizing

Value of Information (VoI) theory to quantify the SHM per-
formance (Faber & Th€ons, 2013; Pozzi, Der Kiureghian, &
Kundu, 2011; Straub, 2014). Based on this approach, the ideal
SHM strategy is the one found with highest VoI (expected
utility gain) identified with a decision analysis.

The quantified value of SHM information has been uti-
lized to assess the impact of the SHM on decision-making
(Zonta, Glisic, & Adriaenssens, 2014) to optimise the struc-
tural integrity management (Qin, Th€ons, & Faber, 2015) to
evaluate a road viaduct fatigue safety (Bayane, Long, Th€ons,
& Br€uhwiler, 2019) and to optimize the sensor configuration
for damage detection systems (Long, D€ohler, & Th€ons,
2020; Long, Th€ons, & D€ohler, 2018). Moreover, in the
framework of European project of COST Action TU1402
(Diamantidis, Sykora, & Sousa, 2019; Sousa, Wenzel, &
Th€ons, 2019; Th€ons, 2019): “Quantifying the Value of
Structural Health Monitoring” (https://www.cost-tu1402.eu/)
detailed guidelines have been developed for operators, engi-
neers and scientists on quantifying the value of Structural
Health Information (SHI) for Decision Support.

However, in the field of SHM supported structural integ-
rity management, there are still open questions. One of the
issues is permanent versus short-term/periodic monitoring
(del Grosso, 2013). Permanent monitoring is relatively
expensive and may produce a very large amount of data
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requiring complex data transmission and management
resources. Periodic monitoring is performed with temporary
SHM installations on structures collecting data for a short
time in defined intervals facilitating instrumentation use for
multiple structures. Moreover, portable units may be
deployed to maximize the spatial coverage of structures.

The focus of the article aims thus to provide new insights to
strengthen the understanding of permanent versus periodic
monitoring in the case of long-term deterioration assessment
(fatigue) and to explore novel methodologies to rationalize the
use of monitoring (permanent versus periodic) through utility-
based decision analysis. For this, a methodology is illustrated
with strain and temperature data used to assess a long-term
deterioration mechanism as fatigue. Although the monitoring
system was permanently installed, one could think of scenarios
where sensors have been installed but not the acquisition units
via Unmanned Aerial Vehicles. This would allow for monitor-
ing a number of structures by having a limited number of data
acquisition units (expensive equipment). For other mecha-
nisms (e.g., to assess movement of bearings or articulations),
one could reason similarly: use short-term monitoring strat-
egies and then move the equipment to other structures.

This article posteriorly compares the SHM strategies in
regard to monitoring durations based on a reference continu-
ous monitoring dataset through utility-based decision ana-
lysis. The utility-based decision analysis is the basis of VoI
analysis, in which the VoI is defined as the expected utility
gain between (pre)-posterior decision analysis and prior deci-
sion analysis (Raiffa & Schlaifer, 1961). In this paper, a utility-
based posterior decision analysis is implemented based on the
obtained monitoring information to optimize SHM strategies
posteriorly in terms of monitoring durations, in the case that
the prior information of the structure is not available. With
this study, it is envisaged to provide:

1. a methodology to extend the fatigue service life of the
welds based on periodic monitoring,

2. a quantification on the duration of those periodic mon-
itoring, and

3. a comprehensive understanding of the main parameters
influencing the optimal decisions on the monitor-
ing strategies.

The article starts by introducing the methodology
employed for selecting optimal monitoring strategies and
deciding to extend the service lives of welded joints. This

includes utility theory and posterior decision analysis as well
as specific data-driven probabilistic models employed to esti-
mate remaining fatigue lives building upon the previous art-
icle by the authors (Long, Alcover, & Th€ons, 2019). The
proposed theoretical approach is then illustrated with a case
study from the Great Belt Bridge. The monitoring data has
been split between four options to simulate the case of peri-
odic monitoring for the purpose of the article. The posterior
expected utilities of different monitoring strategies are quanti-
fied and the optimal monitoring strategy and decision on ser-
vice life extension of the instrumented welds are determined.

2. Methodology

The methodology section introduces the principles of both
utility-based decision analysis and monitoring data-based
fatigue life predictions, which is shown in Figure 1. The
utility-based decision analysis solves the lifecycle integrity
management problems considering structural performance
assessment and prediction, consequences and lifecycle cost
and benefit, with establishment of the decision scenarios
and decision rules. The monitoring data-based fatigue life
prediction provides input information for the utility-based
decision analysis, such as monitoring costs and probability
of fatigue failure based on a probabilistic fatigue model.

2.1. Utility-based decision analysis

The utility theory dates back to 1738 when Bernoulli defined
that the value of an object must not be determined on the basis
of the price or cost, but instead on the utility it yields
(Bernoulli, 1738). Inspired by Bernoulli’s hypothesis, Von
Neumann et al. used it as a foundation to build their game the-
ory in 1944, which is applicable to various contexts (Von
Neumann, Morgenstern, & Kuhn, 2007). Furthermore, in 1961
Raiffa and Schlaifer formulated the decision theory (Raiffa &
Schlaifer, 1961). This is now applied to the field of SHM and
used for quantifying the value of monitoring information.

The decision process can be illustrated in a decision tree,
as shown in Figure 2. According to Raiffa and Schlaifer, a
utility (monetary) function u e, z, a, hð Þ is assigned to a deci-
sion maker to describe the decision consequences when per-
forming an experiment e, e.g., a SHM strategy according to
(Faber & Th€ons, 2013; Pozzi & Der Kiureghian, 2011);
observing a particular outcome z, e.g., detecting damage or
not; taking a particular action a, e.g., repair, replace or do-
nothing; and then obtaining a particular state of a structure
h, e.g., safe, damaged or failed. The utility function should
contain the total cost and benefits throughout the decision
process. The total cost will be the sum of the costs of conse-
quences (failure costs considering fatalities, economic, envir-
onmental and social impacts); the cost of actions (e.g.,
repair cost); and the cost of monitoring (strain gauges
investment, installation, operation and replacement costs,
etc.). The benefits are related to the socio-economic effects
for the state and company e.g., from toll charges and for the
users, e.g., time saving and for the environment, e.g., from
reduction of CO2 emissions.

Figure 1. Road map of the proposed methodology.
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However, the state of the structure is subjected to uncer-
tainties. Therefore, a probability P e, z, a, hð Þ needs to be
assigned to represent the belief of knowledge of the decision
maker regarding the state of the structure h after imple-
menting a strategy e, obtaining the outcome z and taking
an action a: There may be m states in total for the structure,
e.g., damaged, undamaged, slightly damaged or failed, etc.
So that the expected utility U e, z, a, hð Þ can be written as:

U e, z, a, hð Þ ¼
Xm
j¼1

u e, z, a, hj
� � � Pðe, z, a, hj� (1)

Depending on how much information is available at the time
of decision making, the probabilities of the system states
P e, z, a, hð Þ can be differentiated as prior probability when
only the design information of the structure is known, poster-
ior probability when additional SHM information is obtained
and pre-posterior probability when SHM information is mod-
elled and predicted but not yet implemented. The expected
utility U e, z, a, hð Þ will be termed accordingly as prior utility,
posterior utility and pre-posterior utility (Faber, 2012).

When considering SHM, inspection and repair planning
within the lifecycle integrity management, the expected util-
ity during service life USL can be formulated as:

USL ¼ UB � UF � UR � UI � UM (2)

where:

UB ¼
XTSL

t¼1

B tð Þ � 1� P Ftð Þð Þ � 1

1þ cð Þt

UF ¼
XTSL

t¼1

CF tð Þ � DP Ftð Þ � 1

1þ cð Þt

UR ¼
XNR

i¼1

CR Tið Þ � P RTið Þ � 1� P FTið Þð Þ � 1

1þ cð ÞTi

UI ¼
XNI

j¼1

CI Tj
� � � 1� P FTj

� �� � � 1

1þ cð ÞTj

UM ¼
XNM

m¼1

CMðTmÞ � 1� P FTmð Þð Þ � 1

ð1þ cÞTm

where, UB is the expected total lifecylce benifts, UF is the
expected total cost of failure during service life, UR is the
expected total lifecycle repair costs, UI is the expected total
inspection costs during service life, UM is the expected total
monitoring costs. In addition, BðtÞ is the annual benefit at

year t, CFðtÞ is the cost of failure at year t,CRðTiÞ is the
cost of repair at repair year Ti, CI ðTjÞ is the cost of inspec-
tion at inspection year Tj, CM ðTmÞ is the cost of monitor-
ing at monitoring year Tm, NR is the total number of
repair, NI is the total number of inspection, NM is the total
number of monitoring; P Ftð Þ is the probability of failure at
year t; DP Ftð Þ is the annual probability of failure at year t:
P RTið Þ is the probability of repair at repair year Ti; TSL is
the service life; c is the discounting rate. It is noted that a
decision rule will normally be introduced to simplify the
decision process, e.g. an action is required if the reliability
reaches a specified target probability PTarget:

The integrity management of a structure usually involves
multiple choices of actions and SHM strategies. The optimal
choice of action and SHM strategies is found through maxi-
mizing the expected utilities of different actions and SHM
strategies during service life. The optimal action and strategy
will result in the highest expected utility. In order to system-
atically analyse the expected utility influencing parameters
beyond the probabilistic engineering models, the target
probability PTarget , benefit B, failure cost CF, inspection
costs CI , repair cost CR, monitoring cost CM and discount
rate c will be parametrically analysed in the frame of a pos-
terior decision analysis in Section 4. The posterior probabil-
ity of failure will be calculated using probabilistic data-based
models described in Section 2.2.

2.2. Monitoring data-based fatigue life prediction

The monitoring data-based probabilistic model is built on
three types of data as show in Table 1: pavement tempera-
tures acquired from temperature sensors, vehicle traffic
counts obtained from a toll system and strain data obtained
from strain gauges. The following is a brief summary of the
monitoring data-based probabilistic model as shown in
Figure 3, for a detailed and comprehensive model
description it can be referred to (Farreras-Alcover,
Chryssanthopoulos, & Andersen, 2017) .

Fluctuations of the average of the pavement temperatures
Tt are modelled by a generic sinusoidal function with
parameters a1, a2, a3 and mT :

Tt ¼ a1 � sin a2 � t þ a3ð Þ þmT (3)

Daily-averaged pavement temperatures TDt is de-seasonalized
by deducting the daily mean value Tt and then differentiated
by the monthly standard deviation rT, t of the time series:

Figure 2. Illustration of a decision tree.
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T�
t ¼ TDt�Tt

rT, t
(4)

The de-seasonalized daily-averaged pavement temperature
T�
t is further fitted to an autoregressive (AR) model, where

uT, 1 is the coefficient of AR model and �T, t is a random
normal error parameter at time t:

T�
t ¼ uT, 1 � TT, t�1 þ �T, t (5)

Similarly, the heavy daily-aggregated traffic count BDt is
firstly de-seasonalized to B�

Dt by subtracting the daily average
lB, t and divided by the weekly standard deviation rB, t of
the time series:

B�
Dt tð Þ ¼

BDt�lB, t
rB, t

(6)

A regression model is applied to identify the day-of-the-
week effect on the de-seasonalized time series B�

Dt with the
parameters ki (ith regression coefficient), Xi, t (ith dummy
descriptive variable) and �B, t (random error process param-
eter at time t):

B�
DtðtÞ ¼

X
ki � Xi, t þ �B, t (7)

The traffic regression model’s residuals are modelled by an
AR model where �B, t is the regression error at time t, uB, i is
the parameter of the AR model, p is the order of the AR
model and tt is a normal random error parameter:

�B, t ¼
Xp
i¼1

uB, i � �B, t�1 þ tt (8)

The daily-aggregated fatigue loading at a given welded joint,
DDt , is conservatively calculated from Equation (9), where
Dri is the ith stress range out of the total amount of stress
cycles NC within the time step Dt (1 day) and m is the SN
endurance curve slope:

DDt tð Þ ¼
XNC

i¼1

Drmi (9)

In orthotropic steel decks, the key causes of fatigue damage
are pavement temperatures and heavy traffic intensities.
Hence, a regression model among daily-averaged pavement
temperatures TDt , daily-aggregated heavy traffic counts BDt

and daily-aggregated SN fatigue loading DDt is introduced
by (Alcover, 2014). The left term in Equation (10) can be
regarded as normalized fatigue loading per heavy vehicle
when considering SN curve with fatigue parameter m ¼ 3,
which is for simplification conservatively considered as sin-
gle-slopped with no cut-off limit:

DDt

BDt
T0ð Þ ¼ hw � T06tn�p�1 � stot (10)

where T0 ¼ 1 T1
0 ::: Tp

0

� �T
is a specified temperature of

the pavement for which the forecast band is computed, h

are the parameters of the regression model, n the number of
data points corresponding to the training dataset associated
used to approximate the regression parameters, p the order
of the regression model, tn�p�1 a t-distribution with n� p� 1
degrees of freedom and stot the estimate of the overall regres-
sion model variance at a given TDtðtÞ:

The fatigue limit state function can be described on the
basis of the SN curves to measure fatigue damage and with
Miner’s accumulation law:

g X, tð Þ ¼ D� 1
A
�
Xt
t¼1

DDt tð Þ (11)

where X is the random variables vector, D is Miner’s sum at
failure (Miners Rule is one of the most used cumulative
damage equations for failures caused by fatigue. When the
sum of damage fractions is greater than 1.0, it will lead to
failure), A is the material parameter defining the SN fatigue
curve. Considering the above succession of regression and
time-series models considering daily-averaged pavement
temperatures and daily-aggregated heavy traffic, the limit
state function of fatigue is:

g X, tð Þ ¼ D� 1
A

Xt
t¼0

BDt tð Þ
Xpþ1

i¼1

hi�1T
i�1
Dt tð Þ þ tn�p�1stot

 !

(12)

The sensor measurement error could be further included in
the probabilistic model define in Equation (12). However,
the measurement error has been found to be insignificant
due to the quality of the installed equipment and its calibra-
tion in comparison to the other uncertainties (e.g., fatigue
damage parameter A, Miner’s sum at failure, etc.).

The weld will fail when the accumulated fatigue damage
is larger than Miner’s sum at failure. So that the probability
of failure PðFtÞ can be estimated via Monte Carlo
Simulation method as follows:

PðFtÞ ¼ Pðg X, tð Þ � 0Þ (13)

The uncertainties of the monitoring-based model are con-
sidered through modeling the SN fatigue parameter and
Miner’s sum at failure as random variables not linked with
SHM data. The uncertainties of the SHM data are treated
on the process of deriving three different models for fatigue

Table 1. Summary of the monitoring data from the monitoring system.

Monitoring system Monitoring data

Temperature sensor Pavement temperature
Toll system Vehicle traffic counts
Strain gauges Strain data

Figure 3. Flow chart of monitoring data-based probabilistic model.
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damage simulation: i) regression models for SN fatigue
damage prediction (here the uncertainties are captured by
the prediction bands of the models presenting described by
tn�p�1stot in Equation (10), ii) time-series models for tem-
perature prediction and iii) time-series models for traffic
prediction. The uncertainties of the time-series models are
captured by the random error process associated to each
model and characterized via SHM data.

The pavement temperatures impact stress ranges on
orthotropic steel decks and thereby influence fatigue life due
to pavement-steel composite action. The model presented in
Equation (10) predicts the fatigue damage at a given detail
per unit of heavy vehicle and at a given pavement tempera-
ture. Then, Equation (12) uses independent models for pre-
dicting heavy traffic counts and pavement temperatures.
These models are eventually used to calculate fatigue dam-
ages. The results presented in the article correspond to a
case with no increase of average pavement temperatures nor
traffic levels than the ones used to derive the different data-
based models. The probabilistic model for data-based fatigue
life prediction used in Equation (12) can consider different
scenarios in terms of future average temperatures and traffic
levels. This makes it possible to simulate unexpected events
such as COVID-19 as they will have an impact on the daily
number of heavy traffic vehicles used in the probabilistic
model for fatigue prediction. In effect, vehicle counts and
vehicle categories are monitored at the toll system of the
bridge on an hourly basis; they have been used to

characterize the traffic model BDt in Equation (12). More
details can be found in (Farreras-Alcover et al., 2017).

3. Case study

The above approach is illustrated with a case study from the
Great Belt Bridge, which is a suspension bridge with main
span of 1624m and maximum hanger length of 177m in
Denmark as shown in Figure 4. The cross-section of the
orthotropic steel bridge deck (OSD) is formed with a closed
steel box girder. Longitudinal troughs and crossbeams are
located about 4m apart on the OSD. The fatigue of through
to deck weld and trough splice weld is considered with
designed fatigue life of 100 years with certain fixed inspec-
tion intervals. Its operation started in 1998.

3.1. sHM system

In 2007, after approximately 10 years of operation, a compre-
hensive SHM system for design verification and condition
monitoring was installed. The SHM system on the Great Belt
bridge consists of, among others, a pavement temperature mon-
itoring system, traffic monitoring system (used by the toll sys-
tem) and strain monitoring system (Figure 5). The location of
the fatigue prone details to be assessed was determined prior to
the writing of the article to perform a fatigue assessment task
on the two critical details for the orthotropic steel deck under
consideration: a trough-to-deck weld (detail category 50

Figure 4. Illustration of Great Belt Bridge. (Temp. ¼ Temperature, SG¼ Strain Gauge).

Figure 5. Illustration of strain monitoring system.
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according to EN1993-1-9-Part1-9) and a trough-splice weld
(detail category 71 according to EN1993-1-9-Part1-9), as shown
in Figure 6. Details on the fatigue prediction methodology can
be found in (Farreras-Alcover, Andersen, & McFadyen, 2016).

A cross-sectional strain monitoring system instrumented
consists of 15 uniaxial strain gauges (Figure 5), of which 10
gauges (i.e. 1,3,4,6,7,9,10,12,13,15) monitor the transverse
nominal strains at the trough to deck weld, and 5 gauges
(i.e. 2,5,8,11,14) monitor the longitudinal nominal strains at
trough splice welds (Figure 6). Strain gauges 1 to 9 are posi-
tioned under the slow traffic lane, which is passed by the
heavy vehicles, while the others are positioned under the
fast traffic lane. Four temperature monitoring sensors are
embedded into two different cross-sections of the pavement
and record the temperature every 5minutes. At the tollgate,
the crossing vehicles are immediately recorded on an hourly
basis according to their measurements.

3.2. SHM strategies

Farreras-Alcover et al. concluded that the measurement
from SG8 (measured the trough splice weld) were associated
with the highest fatigue loading (Farreras-Alcover et al.,
2016). This weld is under the slow traffic lane where heavy
vehicles run inducing higher stress cycles than at the fast
lane. For convenience of demonstration, the modelling of
SHM strategies is based on the training data sets from SG8
between February 2012 to July 2012, which is assumed to
capture the entire temperature spectrum within a normal
year owing to the regular repeatability of the temperature
spread on the pavement (Farreras-Alcover et al., 2016).

According to the different monitoring phases and the
time duration, four different monitoring strategies in terms
of time durations are discussed as presented in Table 2. The
reference monitoring option e0 represents continuous moni-
toring for 168 days, option e1 to option e4 represent period-
ical monitoring with two phases of separate monitoring and
7, 14, 28, 42 monitoring days per phase respectively. The
time windows associated with 4 options are selected based

on i) data availability and ii) consideration of representative
’extreme’ weather conditions, i.e. data from February to
July. In general, temperature variations are lower during
cold conditions; hence this effect is accounted for in the cal-
culated reliability profiles.

3.3. Fatigue life prediction

The faituge life prediction is calculated following the probabil-
istic fatigue model from Section 2.2 and the variables in the
probabilistic model are simulated following the model
described in Table 3. The posterior probability of failure based
on monitoring data P Ft, eið Þ for monitoring straetgy ei is calcu-
lated with Equation (13) and is shown in Figure 7(a), which
increases with time. For the purposes of this study, it is
assumed that when reliability profiles reach a certain target
probability, it is required to take a certain action. The target
probability is set as 10�4 (reliability index b¼ 3.7) according
to the Joint Committee on Structural Safety (JCSS, 2001) con-
sidering normal relative costs of safety measures and minor
consequences of failure. The weld is assumed to get rehabilita-
tion after reaching the target probability. The probability of
repair at the repair year is equal to the target probability.
After the rehabilitation, the welds are assumed to behave as
new and the posterior failure probability is assumed to be the
failure probability in the year zero. The total number of reha-
bilitations depends on how many times it will reach the target
probability during the whole service life.

Let P Ft, ei jRtR

� �
be the posterior probability of failure after

the rehabilitation event RtR implemented at year tR with
SHM strategy ei; tR is the year in which the resulting poster-
ior probability of failure P Ft, eið Þ dependent on monitoring
data from strategy ei is equivalent to the target probability
PTarget: The posterior probability of failure after rehabilita-
tion P Ft, ei jRtR

� �
is calculated by:

P Ft,ei jRtR

� �¼ P Ft,eið Þ, t<tR¼arg P FtR ,eið Þ¼PTarget
� �

P F t�tRð Þ,ei
� �

, t� tR¼arg P FtR ,eið Þ¼PTarget
� �(

(14)

The posterior probability of failure after rehabilitation
P Ft, ei jRtR

� �
given reference SHM data is shown in Figure 7(b).

It is worth noting that the fatigue reliability profiles are rather
conservative considering single-slopped SN curves with no cut-
off limit. The probabilistic models for the SN resistance are
given in Table 3 for the two details considered. A slope of

Figure 6. Strains gauges at welds (SG-TS¼ Strain Gauge Trough Splice, SG-TD:
Strain Gauge Trough-to-deck).

Table 2. SHM strategies.
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m¼ 3 is considered for the SN curve in log-scale (number of
cycles to failure versus stress range). The above assumptions
highlight that the results presented in the article shall be read as
an illustration of the presented methodology for assessing opti-
mal monitoring strategies, and not as representative of the
actual fatigue life of the instrumented details.

3.4. Decision scenario

As mentionend before the welds are designed with a fatigue
life of 100 years. After obtaining the predictions for fatigue
life based on monitoring data, for the purpose of the inves-
tigation presented in this article, it aims to explore whether
to extend the service life of the welds to 120 years. Given
that different monitoring strategies provide different predic-
tions of fatigue reliability profiles, it aims to figure out
which monitoring strategy can achieve maximum utilities/
benefits for the lifecycle integrity management to rationalize
the use of SHM techniques for fatigue assessment.

A utility-based decision analysis is introduced in section
2.1 to solve the problem. The decision process is visualised in
Figure 8 with a decision tree where ai denoting the option of
the actions, e.g., a0 corresponding to a service life of 100 years
and a1 to an extended service life of 120 years. For different
choices of the service life, the integrity of the welds needs to
be managed, which involves planned rehabilitation costs CR:
The states of the welds hi are defined as safe state h1 and fail-
ure state h2, which is effectively characterized by the fatigue
reliability profiles. Welds will fail when the accumulated
fatigue damage is larger than Miner’s damage at failure. If the
weld stays safe, the bridge will be operated normally with
annual benefits B: If the weld fails, unscheduled rehabilitation
events will be required, so that there will be a fatigue failure

cost CF which will be the unscheduled rehabilitation cost. ei
represents the different monitoring strategies from Section
3.2. Given the different monitoring phases and monitoring
durations, there will be different costs of monitoring CM:

3.5. Utility calculation

Uei is to denote the expected maximum utilities regarding
various actions with SHM strategy information ei :

Uei ¼ max½Uei , a0 ,Uei , a1 � (15)

in which, Uei , a0 is the expected utility when the service life
TSL is kept at 100 years (a0) with monitoring option
ei, Uei , a1 is the expected utility when the service life TSL is
extended to 120 years (a1) with monitoring option ei:

Let aj represent a0 and a1 (j ¼ 0, 1), then the expected
utility Uei, aj of the SHM strategy information ei for taking
action aj is calculated by:

Uei, aj ¼
XTSL, aj

t¼1

1� P Ft, ei jRtR

� �� � � B � 1

ð1þ cÞt

�
XTSL, aj

t¼1

DP Ft, ei jRtR

� � � CF � 1

ð1þ cÞt

�
XNm, ei

n¼1

CM � 1� P Ftm , ei jRtR

� �� � � 1

ð1þ cÞtm

�
XNR, aj

n¼1

CR � 1� P FtR, ei jRtR

� �� � � 1

ð1þ cÞtR

(16)

It has to be noted that in Equation (16), there is either a0
or a1, but not both in the same time; B is the annual

Table 3. Variables of the probabilistic model.

Parameter Symbol

Distribution/Expression

ReferenceFunction Mean Standard deviation

Trough-to-deck weld fatigue parameter A Lognormal 7.30E11 4.23E11 (Eurocode, 2005), (Jcss, 2001)
Trough-splice weld fatigue parameter A Lognormal 2.09E12 1.21E12 (Eurocode, 2005), (Jcss, 2001)
Miner’s damage at failure D Lognormal 1.0 0.3 (Wirsching, 1995)
Daily heavy traffic counts BDtðtÞ Equations (6) – (8)
Daily averaged pavement temperatures TDtðtÞ Equations (3) – (5)

Figure 7. Prediction of probability of fatigue failure: (a) during service life of 120 years and with target probability (b) if doing nothing or rehabilitation given refer-
ence SHM data.
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benefit, CF is the failure cost and CR is the planned rehabili-
tation cost (in relation to Equation (2), repair costs CR and
inspection costs CI are taken together in the case study and
presented as rehabilitation cost CR) ; tR is the year of
rehabilitation; CM is the cost of monitoring per day; Nm, ei is
the total monitoring days from strategy ei; NR, aj is the total
number of repair times with action aj; tm is the year of
monitoring. c is the discounting rate.

From the literature (Sund & Baelt, 2014), it is known
that the Great Belt bridge and the connected tunnel, roads
and railways together are called the Storebaelt link, which
was built between 1988 and 1998, with the total construc-
tion costs amounting to EUR 3.56 billion in 1988 prices.
The construction costs are financed through the state guar-
antee model and the loans are repaid by the users of the
facilities. It is found that the Great Belt Company had loans
guaranteed by the government and lent capital at an interest
rate of 1.5-2% (Mouter, 2015). According to the report
released by the Ministry of Transport and Sund & Baelt
(2014), it is revealed that the Storebaelt link would bring a
gain of EUR 50.87 billion over 50 years to Danish society,
equivalent to EUR 1.21billion annually, while the construc-
tion and operation of the link over a 50 year period costs
just EUR 18.66 billion.

Based on the information above, to illustrate the case
study, it is assumed that half of the gain from the Storebaelt

link comes from the Great Belt bridge, so that the normal-
ized annual benefit B for the Great Belt bridge is 0.17
(0.5�1.21/3.56) per year, the normalized cost of rehabilita-
tion CR is 5 (18.66/3.56), the normalized cost of failure CF

is assumed to be 100, the the normalized cost of monitoring
CM is assumed to be 0.01 per day, the discounting rate c is
0.02 (equavalent to interest rate) per year. It is noted that
due to the confidentiality, the data shall be read as an illus-
tration of the input paramenters of the presented method-
ology, and not as representative of the actual cost and
benefits of the Great Belt bridge.

3.6. Results

The utility calculation follows Section 3.5 and the results are
shown in Figure 9. The findings in Figure 9 indicate that for
all SHM strategies it is recommended to extend service life to
120 years. The utilities in Figure 9 show that option e1 will be
recommended due to the highest utility. It is found that in
the case study a long monitoring duration will reduce the
risk but increase the cost of monitoring, which leads to an
overall reduction in utility. The additional cost of longer
monitoring is not justified here because the reduction of risk
does not compensate for the increase of the cost. The optimal
SHM strategy is thus short-term monitoring. However, the
results may be sensitive to the variation of cost and benefit
models, which is investigated in Section 4.

4. Parametric analysis

Further to the results presented in Figure 9, due to the uncer-
tainties related to the input parameters, a parametric analysis
of the utilities associated with different monitoring durations
and and choices of actions is performed considering the vari-
ability of the model parameters: (a) target probability PTarget ,
(b) benefit B, (c) failure cost CF , (d) reahbilitation cost CR,
(e) monitoring cost CM and (f) discount rate c:

4.1. Target probability PTarget

The target probability PTarget is the acceptable optimum
failure probability which is known as an adaptive control
parameter based on the degree of failure impact and the
relative expense of protection measures (JCSS, 2001). It
varies from 10�6 (large consequences of failure, small

Figure 8. Decision tree of posterior decision analysis.

Figure 9. Identification on the most valuable SHM strategies during the bridge
service life.
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relative cost of safety meausres) to 10�3 (minor consequen-
ces of failure and large relative cost safety meaure) accord-
ing to (JCSS, 2001). The target probability PTarget was
previously chosen as 10�4 considering minor consequences
of failure and a normal relative cost of safety measures. For
assessing its effect, it is reduced from 10�4 to 10�5 and the
outcomes are shown in Figure 10(a). Reducing the target

probability means that decision-makers are more conserva-
tive with lower tolerance of risk leading to the welds being
rehabilitated more often during service life.

Figure 10(a) presents the utilities with the abovemen-
tioned change. The uitilies are all increasing with the
increase of the target probability. It increases linearly in
some ranges but stays constant in other ranges. The utilities

Figure 10. utilities associated with different monitoring durations and choices of actions considering the variability of the model parameters: (a) target probability
PTarget, (b) benefit B, (c) failure cost CF, (d) inspection and rehabilitation cost CR, (e) monitoring cost CM and (f) discount rate c:
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curves of options e1 and e2 with action a1 behave differently
from the other curves. They start at the lowest value but
end the highest values at the highest target probabilities.
That’s because options e1 and e2 provide higher probability
of failure than others. Hence, when PTarget is high, options
e1 and e2 will reach the target probability ealier, thus result-
ing in more times of rehabilitation when reaching 100 years
ða0Þ: To compansate the increase of the rehabilitation costs,
it will be suggested to continue operation to 120 years (a1).
Their flat plateau is however significantly lower than the
plateaus of the other curves. The a0 action is more consist-
ent with longer constant flat plateau over almost all of the
observed range. For a low value of PTarget, all options except
e1 and e2 have very similar utility values.

There are certain thresholds for PTarget where sudden
increases of the utilities occur. When PTarget < 2 � 10�5,
option e3 with action a0 has the highest utility. When

2 � 10�5 � PTarget < 3 � 10�5, utility with option e4 and
action a1 is the highest. When

3 � 10�5 � PTarget < 7 � 10�5, utility with option e3 and
action a1 is the highest. When PTarget < 2 � 10�5, option e1
with action a1 will be recommended. A summary of most
valued decisions with changed of PTarget can be found in
Table 4. The summary of utilities in Figure 10(a) shows that
the change of the target probability actively affect the deci-
sion of optimal SHM durations and service life extension of
the welds. The tolerant- to- risk decision maker (high value
of PTarget) will get more benefit with the change on
the PTarget:

4.2. Benefit B

The annual benefit is subjective to change due to the growth
of population, change of urban planning etc. Therefore, the
annual benefit rate B is increased and the results are shown
in Figure 10(b). It is found that e1 has the highest utilities
and the utilities associated with a1 extending service life to
120 years are always higher than those with a0: This is
because of a higher profit-drive leading to a longer oper-
ation period. Figure 10(b) shows that the utilities increase
linearly with the increase of benefit, but the difference
between the slop of cures of the varied monitoring dura-
tions is very small.

4.3. Cost of failure CF

When increasing the cost of failure CF from 100 to 1000,
the computation results in Figure 10(c) display the same
trend as in Figure 9 leading to the extension to 120 years
ða1Þ with option e1: The utilities are slightly decreasing with
the increase of CF: The choice of the service life extension
and choice of monitoring duration are not influenced much
by the change of cost of failure. It is because the difference
between the utilities for 120 years and 100 years is the same.
It is also due to the very small annual probability of failure,
the accumulated risk of failure is comparably small as well.

4.4. Cost of rehabilitation CR

The cost of rehabilitation may be subject to change due to
the choice of rehabilitation methods. When increasing the
cost of rehabilitation CR from 5 to 50, the utilities in Figure
10(d) strongly decrease and become negative for both keep-
ing the service life at 100 years a0 and extending it to
120 years a1: That is because the accumulated benefits and
reduction of risk of failure cannot compensate the increase
of cost of rehabilitations when the rehabilitation cost is too
high. The variations between the maximum utilities of all
the options in Figure 10(d) are very small. It can be inter-
preted that when the cost of rehabilitation is very high, it is
no longer worthwhile to investigate the SHM strategies,
which is not competitive, but the focus should be on finding
solutions to reduce the cost of rehabilitations.

4.5. Cost of monitoring CM

The cost of monitoring may differ based on the choice of
monitoring techniques. When increasing the cost of moni-
toring CM from 0.01 to 0.1 per day, Figure 10(e) shows that
it is not beneficial to do monitoring with reference SHM
option e0 due to high monitoring costs. As expected, the
utility decreases with increasing monitoring durations, but
the decreasing gradient is different. The curve of option e1
has the lowest gradient. Therefore, it is recommended to do
monitoring with option e1 and extend the service life to
120 years. A decision-maker could learn that the sparser and
shorter the SHM campagins, the better is the payback of
monitoring and lesser its sensitive to the SHM cost.

Table 4. Summary of the most valued decisions about the SHM strategy to adopt, regarding the critical parameters.

Critical parameter Most valued decision

Target probability, PTarget For PTarget < 2 � 10�5, monitoring for 4 consecutive weeks every 6 months,
given the service lifetime is kept to 100 years (e3, a0)

For 2 � 10�5 � PTarget < 3 � 10�5, monitoring for 6 consecutive weeks every 6 months,
given the service lifetime is extended to 120 years (e4, a1)

For 3 � 10�5 � PTarget < 7 � 10�5, monitoring for 4 consecutive weeks every 6 months,
given the service lifetime is extended to 120 years (e3, a1)

For PTarget � 7 � 10�5, monitoring for 1 week every 6 months,
given the service lifetime is extended to 120 years (e1, a1)

Benefit, B Monitoring for 1 week every 6 months, given the service lifetime is extended to 120 years (e1, a1)
Cost of failure, CF
Cost of rehabilitation, CR
Cost of monitoring, CM
Discounting rate, c
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4.6. Discounting rate c

The discount rate is also connected with the so-called social
discount rate, which represents the value that society assigns
to its existing situation compared to potential future states.
It has significant variations in practice around the world
(Zhuang, Liang, Lin, & De Guzman, 2007), with lower levels
introduced by developed countries (3%-7%) than the devel-
oping countries (8-15%). The value of discount rate also
changes with time depending on public policies, e.g., the
Danish Ministry of Finance in May 2013 reduced its social
consumption discount rate from 5% per year to 4% per year
for the first 35 years for the investment of long-term proj-
ects, 3% for the years in the interval 36 to 69 years, and 2%
for the rest of years (Finansministeriet, 2013).

The discounting rate c is increased from 0.02 to 0.2 and
the results in Figure 10(f) illustrate that the utilities are
exponentially decreasing and option e1 has the highest util-
ities. The utilities of keeping 100 years a0 or extending to
120 years a1 have almost the same value. When the dis-
counting rate c is larger than 0.05, the utilities become nega-
tive. That’s because a higher discount rate means greater
uncertainty and the cash flow in the future will have a lower
value. Since money loses value fast with time, it is not bene-
ficial to invest on long-term return projects. Thus it may be
recommend not to invest in monitoring at all when the dis-
counting rate c is high. A decision-maker could learn that
the longer is the implementation of the SHM strategy, the
higher the importance of the economic situation of
the country.

5. Conclusions

Many studies focus on SHM data gathering, processing and
probabilistic model developing. Building upon these studies,
this article contains methodology to utilize the obtained
monitoring information for the determination of i) optimal
monitoring durations and ii) service life extension of the
welds on a steel bridge deck. Through a posterior utility-
based decision analysis of the welds on an orthotropic steel
bridge deck case study, it is shown that a short-term SHM
strategy has a higher expected utility and is thereby pre-
ferred. In contrast, long-term monitoring duration reduces
the risks but leads to an increase of the monitoring costs,
which in turn leads to an overall reduction in the
expected utility.

Through a parametric analysis, this article shows how the
target probability PTarget , benefit B, failure cost CF , rehabili-
tation cost CR, monitoring cost CM and discounting rate c
influence the expected value of the utility and thus
the decisions:

� It is found that the target probability PTarget is the most
sensitive parameter as the change of PTarget will directly
change the number of rehabilitation times and the pos-
terior probability of failure, thus change the total
expected rehabilitation costs and the accumulated risk of
failure, resulting in different choices of monitoring

options and service life extension. However, PTarget may
be subjected to optimization in conjunction witht the
risk attitude of the decision makers. The tolerant- to-
risk decision maker (high value of PTarget) will get more
benefit with the change on the PTarget:

� An increase of annual benefit B will lead to service life
extension. A higher profit-drive will lead to a longer
operation period.

� SHM strategies become not competitive (i.e., not worth-
while) when the cost of rehabilitation is too high. The
rehablitation methods should be chosen carefully as a
high rehabilitation cost CR results in negative utilities.

� An increase of monitoring cost CM will result in a short-
term monitoring option. The sparser and shorter the
SHM durations, the better is the payback of monitoring
and lesser its sensitive to the SHM cost.

� For the investment in monitoring, the discounting rate c
should be thoroughly considered, as a high discounting
rate c will lead to significantly declining utilities. In such
a case, investing in long-term ventures is not advanta-
geous and short-term returning investment is more ben-
ficial. The longer is the implementation of the SHM
strategy, the higher the importance of the economic situ-
ation of the country.

The presented research work considers solely the fatigue
reliability and service life management of selected welds on
an orthotropic steel bridge deck. Future research is needed
to investigate the problem on a system level. Moreover, due
to the methodology specificities, several assumptions on
fatigue life prediction have been made and normalized cost
and benefits models used. This highlights that the results
presented in the article shall be read as an illustration of the
presented methodology for assessing optimal monitoring
strategies, and not necessarily as the actual fatigue life of the
instrumented details and not as representative of the actual
cost and benefits of the Great Belt bridge. Future research is
envisaged to explore comprehensive probabilistic formula-
tions of cost and benefit function and fatigue life prediction
model considering not only a single slopped SN curve.

Notations list

u e, z, a, hð Þ Utility function
e The SHM strategy/experiment
z The SHM /experiment outcome
a Action
h System state
P e, z, a, hð Þ Probability of the state of the structure h after imple-

menting a strategy e, obtaining the outcome z and tak-
ing an action a.

U e, z, a, hð Þ Expected utility function
USL Expected utility during service life
UB Expected benefit
UF Expected cost of failure
UR Expected cost of repair
UI Expected cost of inspection
UM Expected cost of monitoring
BðtÞ The annual benefit at year t
CFðtÞ The cost of failure at year t
CRðTiÞ The cost of repair at repair year Ti

CI ðTjÞ The cost of inspection at inspection year Tj
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CM ðTmÞ The cost of monitoring at monitoring year Tm

Ti The repair year
Tj The inspection year
Tm The monitoring year
NR The total number of repair
NI The total number of inspections
NM The total number of monitoring
P Ftð Þ The probability of failure at year t.
DP Ftð Þ The annual probability of failure at year t
P RTið Þ The probability of repair at repair year Ti

TSL The service life
c The discounting rate
PTarget The target probability
DDt S-N fatigue loading aggregated during a time interval Dt
BDt Daily aggregated counts of daily vehicles
TDt Daily averaged pavement temperature
stot Estimator of the total variance of a regressing model
T0 Given pavement temperature
n Number of available datapoints
p Order of a polynomial regression model
tn�p�1 t-probability distribution with n-p-1 degrees of freedom
D Miner’s sum at failure
A Material parameter defining the SN fatigue curve.
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