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Abstract: This paper presents recent contributions to the Marie Skłodowska-Curie Innovative 
Training Network titled INFRASTAR (Innovation and Networking for Fatigue and Reliability 
Analysis of Structures-Training for Assessment of Risk) in the field of reliability approaches for 
decision-making for wind turbines and bridges . Stochastic modeling of uncertainties for fatigue 
strength parameters is an important step as a basis for reliability analyses. In this paper, the 
Maximum Likelihood Method (MLM) is used for fitting the statistical parameters in a regression 
model for the fatigue strength of reinforcement bars. Furthermore, application of the Bootstrapping 
method is investigated. The results indicate that the latter methodology does not work well in the 
considered case study because of run-out tests within the test data. Moreover, the use of the 
Bayesian inference with the Markov Chain Monto Carlo approach is studied. These results indicate 
that a reduction in the statistical uncertainty can be obtained, and thus, better parameter estimates 
are obtained. The results are used for stochastic modelling in reliability assessment of a case study 
with a composite bridge. The reduction in statistical uncertainty shows high impact on the fatigue 
reliability in a case study on the Swiss viaduct Crêt De l’Anneau. 

Keywords: Bayesian inference; bootstrap method; Maximum Likelihood Method; reinforced-
concrete; uncertainty; fatigue-resistance 

 

1. Introduction 

This paper presents statistical analyses performed on fatigue data obtained from [1], where 
laboratory fatigue tests were performed on reinforcement bars (rebars). 

General methods and techniques utilized for risk and reliability assessment of civil engineering 
structures are presented [2–18]. 

Statistical analyses of the data are an essential step for the stochastic modeling of the material 
fatigue uncertainties, which can next be used as a basis for a probabilistic modeling and reliability 
analysis [19] of structures with reinforced concrete components, such as wind turbines and bridges 
[20,21]. Usually, foundations for onshore wind turbines are constructed by the use of reinforced 
concrete, which is also used in many bridges. Therefore, the development of stochastic models for 
the fatigue limit state and estimation of the resulting reliability can be considered as a contribution 
to reliability assessment of these types of structures, with respect to fatigue failure and also as the 
basis for the development of optimal strategies for the maintenance of wind turbines and bridges. 
[22]. 

Several methodologies can be used to estimate the statistical parameters. For instance: Maximum 
Likelihood Method (MLM), moment method, least square method, and Bayesian statistics. In the 
literature, there are some recommendations indicating which of these methods could be more 
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suitable. At the same time, there is no unique answer to this question, especially for a fatigue case 
study on rebars. On the reliability assessment, choosing a specific method has a direct influence. In 
the reliability assessment, there is a need to have stochastic modeling for the material-resistance as 
well as for the loads. In this paper, the material-resistance model is presented in detail, and at the 
end, using a generic stochastic model for the fatigue load reliability results of a composite bridge are 
presented.  

The MLM is chosen in this study as it gives an estimate of the statistical uncertainties [23]. MLM 
is considered for fitting the statistical parameters [2] in a regression model for fatigue strength. 
Typically, the statistical analyses are based on a limited number of data, for which MLM can provide 
estimates of the uncertainties associated with each of these parameters and the correlation between 
the parameters [24]. This paper also presents the use of the Bootstrap method, which generates 
synthetic data based on the available measurements from the experiment.  

Further, Bayesian statistics is considered taking subjective/prior information into account. This 
is done with application of Bayesian inference with a Markov Chain Monte Carlo implementation 
[25–27]. Bayesian updating is an appropriate tool to update the structural performance function for 
fatigue by applying the information from the structural health monitoring and the prior information 
about different fatigue parameters. The aim is to compare the results of different methodologies and 
to provide information in order to select an appropriate method. 

To study the effect of uncertainty of fatigue resistance model on the fatigue reliability of a 
structure, a case study of Swiss viaduct Crêt De l’Anneau is presented. For this structure, long term 
strain monitoring data on critical reinforcement is available. 

2. Materials and Methods 

2.1. Test Data 

Test data on the fatigue strength test for steel reinforcement from the lab tests were done at 
Aalborg University by Hansen and Heshe [1]. It is utilized for the statistical analysis to determine 
typical fatigue strength uncertainties (see Table 1, where 1 indicated run-out/no failure and 0 
indicates failure). The lab tests are performed with steel reinforcement bars with 16 mm of diameter 
and yields strengths of 570 MPa. The S-N curve for this data is presented in Figure 1. Run-outs are 
depicted in orange and failures in gray. 

Table 1. Data [1]. 

Data Number (Index) Number of Cycles to Failure Stress Range [MPa] Run-out 
1 7,875,829 337 1 
2 4,485,923 335 1 
3 9,182,542 391 1 
4 3,981,071 385 1 
5 347,328 396 0 
6 589,346 403 0 
7 441,005 405 0 
8 371,852 408 0 
9 341,454 408 0 

10 238,658 405 0 
11 255,509 408 0 
12 255,509 420 0 
13 273,550 430 0 
14 215,443 430 0 
15 411,921 439 0 
16 398,107 419 0 
17 411,921 424 0 
18 255,509 467 0 
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19 184,784 488 0 
20 161,215 488 0 
21 161,215 494 0 
22 131,376 503 0 
23 114,619 505 0 
24 129,154 506 0 
25 158,489 507 0 
26 140652 536 0 
27 105,250 536 0 
28 80,113 561 0 
29 53,201 572 0 
30 48,026 572 0 
31 50,547 572 0 

 

Figure 1. S-N curve for rebar data [1]. 

2.2. Statistical Analysis of Fatigue Data of Steel Reinforcing Bars 

For steel reinforcement bars used in concrete S-N, curves are recommended by various 
international codes (such as Model code 2010, Model code 1990, DNV OS C 502, EN 1992-1) [28–31] 
and are generally written as: 𝑛௜ = 𝐾 ∆𝑠௜ି ௠, (1)

or logሺ𝑛௜ሻ = logሺ𝐾ሻ −𝑚 log(∆𝑠௜), (2)

where 𝑛௜ is the number of cycles to failure with stress range  ∆𝑠௜ in test number, 𝑖. 𝐾  and 𝑚 are 
fatigue parameters to be fitted by MLM here using test data [31]. 

To account for uncertainties in fatigue life, Equation (2) can be rewritten [22]: log(𝑛௜) = log(𝐾) −𝑚 log(∆𝑠௜) + 𝜀, (3)

where 𝜀 represents the uncertainty of the fatigue life model and is modelled by a stochastic variable 
with mean value equal to zero and standard deviation, 𝜎ఌ. 𝜀 is often assumed to have a Normal 
distributed [31]. 
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The Likelihood function to be used to estimate the optimal values of the parameters 𝐾, 𝑚, and 𝜎ఌ from test data is written [22]: 𝐿(𝐾,𝑚,𝜎ఌ) =  ∏ 𝑃ሾlog(𝐾) −𝑚 log(∆𝑠௜) + 𝜀 = log(𝑛௜)ሿ ×௡ಷ௜ୀଵ ∏ 𝑃[log(𝐾) −௡ಷା௡ೃ௜ୀ௡ಷାଵ𝑚 log(∆𝑠௜) + 𝜀 > log (𝑛௜)]. (4)

Here, 𝑛௜  is the number of stress cycles to failure or to run-out with stress range ∆𝑠௜  in test 
number i. 𝑛ி is the number of tests where failure occurs, and 𝑛ோ is the number of tests where failure 
did not occur after 𝑛௜ stress cycles (run-outs). The total number of tests is 𝑛 = 𝑛ி + 𝑛ோ . 𝐾, 𝑚, and 𝜎ఌ are obtained from the optimization problem 𝑚𝑎𝑥௄,௠,ఙഄ𝐿(𝐾,𝑚,𝜎ఌ), which can be solved using a 
non-linear optimization algorithm [31]. 

Run-outs contain information which from a statistical point of view has to be included in the 
statistical modelling in order to be consistent with all tests performed. This paper describes how run-
outs can be included using the MLM. The number of cycles where the tests are stopped are often 
chosen in order to limit the costs and time used for the test campaign. 

The terms in Equation (4) can be obtained from Equation (5) [22]: 𝑃[log(𝐾) − mlog(∆𝑠௜) + 𝜀 = log(𝑛௜)] = ଵ√ଶగఙഄ 𝑒𝑥𝑝 ൬− ଵଶ ቀ୪୭୥(௄)ି௠௟௢௚(∆௦೔)ି୪୭୥(௡೔)ఙഄ ቁଶ൰, 

𝑃[log(𝐾) − mlog(∆𝑠௜) + 𝜀 > log(𝑛௜)] = 𝛷 ቆlog(𝐾) − mlog(∆𝑠௜) − log(𝑛௜)𝜎ఌ ቇ. (5)

The parameters 𝐾,  𝑚,  and 𝜎ఌ  are generally determined using a limited number of data. 
Consequently, the estimates are subject to statistical/parameter uncertainty. Since the parameters are 
estimated by the MLM, they become asymptotically (number of data should be >25–30). Normal 
distributed stochastic variables with expected values equal to the maximum-likelihood estimator and 
a covariance matrix equal to [32]: 

𝐶௄,௠,ఙഄ = ൣ−𝐻௄,௠,ఙഄ൧ିଵ = ൦ 𝜎௄ଶ 𝜌௄,௠𝜎௄𝜎௠ 𝜌௄,ఙഄ𝜎௄𝜎ఙഄ𝜌௄,௠𝜎௄𝜎௠ 𝜎௠ଶ 𝜌௠,ఙഄ𝜎௠𝜎ఙഄ𝜌௄,ఙഄ𝜎௄𝜎ఙഄ 𝜌௠,ఙഄ𝜎௠𝜎ఙഄ 𝜎ఙഄଶ ൪. (6)

 𝐻௄,௠,ఙഄ is the Hessian matrix with second-order derivatives of the log-likelihood function. 𝜎௄ , 𝜎௠, and 𝜎ఙഄ  denote the standard deviations of 𝐾, 𝑚, and 𝜎ఌ , respectively, and e.g., 𝜌௄,௠  is the 
correlation coefficient between 𝐾 and 𝑚. 
2.3. Bootstrap Method 

The Bootstrap method developed by Efron [33] may be used for smaller samples and is quite 
flexible concerning the assumptions made. The Bootstrap method applies the actual distribution of 
the measurement errors, which are then propagated using an appropriate Monte Carlo scheme. That 
is, the Bootstrap method can be used to estimate the statistical (parameter) uncertainty. 

Fatigue tests take very long time as it can take millions of cycles before the failure of one 
specimen, and changing the frequency of load application could lead to erroneous results. The 
Bootstrap method can be used to generate more synthetic data, which can then be used to estimate 
the parameter uncertainties as an alternative to the use of MLM described above. 

Residuals are estimated by subtracting the calculated number of cycles to failure from the 
observed number of cycles in logarithmic scale. These residuals are plotted in Figure 2a, considering 
the case when run-outs are not included. This histogram indicates that an assumption of residuals as 
white noise is satisfactory and it is uniformly distributed with a mean value equal to zero. In this 
case, the Bootstrap method can be used, but in applications where run-outs are part of the data, the 
Bootstrap method cannot be used directly, as seen in Figure 2b. 
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(a) (b) 

Figure 2. Histogram for Residuals: (a) without Run-outs; (b) with Run-outs. 

If we plot the residuals along with their index (data number), they are random without 
considering run-outs, which is a basic requirement for using the Bootstrap method, as seen in Figure 
3a. Random in this context means that residuals should not follow a pattern [34]. Whereas in Figure 
3b with run-outs, residuals are following a pattern, so this requirement to apply the Bootstrap method 
is not fulfilled here. 

  
(a) (b) 

Figure 3. Residuals Pattern: (a) without Run-outs; (b) with Run-outs. 

Therefore, it can be concluded that Bootstrapping can be used for estimating parameter 
uncertainty only in the case of no run-outs. 

2.4. Bayesian Inference with Markov Chain Monte Carlo Implementation 

Bays’ rule provides the mathematical basis to update beliefs (prior information) about a variable, 𝜃, given observations, 𝑦. By Bays’ rule, the posterior probability of 𝜃 given observations, 𝑝(𝜃|𝑦) is 
obtained as follows [35,36]: 𝑝(𝜃|𝑦) = ௣(ఏ)௣൫𝑦ห𝜃൯௣(௬) , (7)

Future predictions for 𝑦 ∗ given observations 𝑦 is obtained from the predictive distribution 𝑝(𝑦∗|𝑦) = 𝑝(𝑦∗|𝜃)𝑝(𝜃|𝑦)𝑑𝜃, (8)׬

Thus, future predictions are modeled using the updated probability density function 𝑝(𝜃|𝑦) 
similar to making a prediction for 𝑦 ∗  using a single value of 𝜃  in the classical statistical sense. 
Equation (8) can be estimated using Monte Carlo simulation strategies such as the Markov-Chain 
Monte-Carlo algorithm [36]. 
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By definition, a Markov chain simulation is a sequence of random variables 𝜃ଵ,𝜃ଶ,𝜃ଷ, …  for 
which for any 𝑘, the distribution of 𝜃 ௞  depends only on the most recent one 𝜃௞ିଵ. In practice, 
several independent sequences of Markov chain simulations are created. The Metropolis algorithm 
is used to obtain the transition distribution function [31]. It is an adaption of a random walk that uses 
an acceptance/rejection rule to converge to the specified target distribution. The step-by-step 
procedure is as follows [27]: 

1. Select initial parameter vector 
2. Iterate as follows for 𝑘 = 1, 2, 3, …   

a. Create a new trial position 𝜃∗ = 𝜃௞ିଵ + ∆𝜃,  where ∆𝜃  is randomly sampled from the 
jumping distribution 𝑞(∆𝜃). 

b. Create the Metropolis ratio. 

𝑟 = గቀ൫𝜃∗ห𝑦൯ቁగቆቀ𝜃௞ିଵቚ𝑦ቁቇ, (9)

3. Accept a new sample if: 𝜃௞ = ൜𝜃∗         with probability  min(𝑟, 1)𝜃௞ିଵ                                     otherwise, (10)

Note that this requires the jumping distribution to be symmetric: 𝑞 (𝜃∗, 𝜃௞ିଵ) = 𝑞 (𝜃௞ିଵ,𝜃∗). If 
the jumping distribution is not symmetric, then the Metropolis-Hasting algorithm [37] can be used 
where both sides jumping distributions are part of the ratio. 

Since the posterior distribution can be calculated by Equation (7), where 𝑝(𝑦) is a normalizing 
constant, it also follows that the posterior density function can be written as: 𝑝(𝜃|𝑦) ∝ 𝑝(𝜃)𝑝(𝑦|𝜃), (11)

i.e., the posterior distribution is proportional to the product of the prior and the likelihood functions.  
If it is assumed that the prior distribution is the multivariate Normal distribution, then the 

Likelihood function becomes: 𝑝(𝑦|𝜃,𝜎ଶ) = ଵఙ√ଶగ 𝑒𝑥𝑝 ൬− ଵଶఙమ 𝑆𝑆(𝜃)൰, (12)

where, 𝑆𝑆(𝜃) = ∑ ൫𝑦 − 𝑓(𝑆, 𝜃)൯ଶ௡௜ , (13)

The Metropolis ratio becomes: 𝑟 = ௣ቀ𝜃∗ቚ𝑦,𝜎ଶቁ௣ቀ𝜃௞ିଵቚ𝑦,𝜎ଶቁ = 𝑒𝑥𝑝 ൬− ଵଶఙమ ൫𝑆𝑆(𝜃∗) − 𝑆𝑆(𝜃௞ିଵ)൯൰, (14)

The scale reduction factor R indicates a potential scale reduction for the considered distribution 
when the number of samples goes to infinity (see [38] for theory and more detailed descriptions). The 
sampling is said to converge if R is close to one. Therefore, the number of simulations should be 
chosen such that R becomes as close to one as possible, and thereby, the Monte Carlo sampling error 
close to zero. 

The parameters fitted in the SN-curve in Equation (1) are 𝐾 and 𝑚. The correlation between 
them is illustrated in Figure 4. Here, the Markov Chain Monte Carlo algorithm is used. Furthermore, 
the Metropolis algorithm is applied for obtaining the transition distribution. Based on Reference [36], 
the scale reduction factor 𝑅 is also calculated to 1.0007. 
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Figure 4. Correlation between 𝑘 and 𝑚  
3. Results of Uncertainty Modelling. 

Table 2 shows a comparison between the results obtained by the methods presented above. This 
includes results obtained for the statistical parameters by MLM accounting for run-outs. 
Furthermore, a characteristic, 5% quantile is estimated using the MLM estimates resulting in log 𝑘 = 18.77, which is larger than the characteristic value equal to 17.054 specified in the Eurocodes (see 
[38,39], and Table 2). 

Table 2. Results. 

Parameter 
Mean 

by 
MLM 

Mean by 
Bayesian 
Approach 

Standard 
Deviation 
by MLM 

Standard 
Deviation 

by 
Bayesian 
Approach 

Distribution Remark 

 𝜀  0 0 --- --- Normal Error term  𝜎ఌ  0.39 0.21 0.06 0.04 Normal 
Standard 

deviation of 
error term 

 log 𝑘  18.77 18.72 0.07 0.05 Normal 

Location 
parameter in 

Wöhler 
curve  𝑚  Fixed 

to 5 5.03 --- 0.02 Fixed/Deterministic 
Slope of 
Wöhler 
curve 

 𝜌୪୭୥௞,ఙഄ     0.06 0.03 Deterministic 

Correlation 
coefficient 
between 

location and 
standard 

deviation of 
error 

The Markov Chain Monte Carlo simulation results in Figure 5a show that log 𝑘 is mostly in the 
interval 18–19, and in Figure 5b, 𝑚 is close to 5, which is in agreement with the fixed value used for 
MLM. It should be noted that 𝑚 is assumed fixed in the reliability section. The Posterior marginal 
density function is also shown in Figure 6. 
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(a) (b) 

Figure 5. Markov Chain Simulation for: (a) 𝑘; (b) 𝑚. 

 
(a) (b) 

Figure 6. Posterior marginal density functions: (a) 𝑘; (b) 𝑚 . 
4. Case Study: Crêt De l’Anneau Viaduct 

To illustrate the effect of change of model uncertainty of  log 𝑘, i.e., 𝜎ఌ on the fatigue reliability 
of a structure, a case study of a composite (reinforced concrete deck and steel box girders) viaduct in 
Switzerland is chosen as seen in Figure 7. 
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Figure 7. A view of Crêt De l’Anneau. 

The identified fatigue critical location of this composite bridge is the reinforced concrete slab, as 
shown in [40] pp.41. The fatigue behavior of the reinforced concrete deck slab is mainly governed by 
transverse bending between two girders. It contributes also to local longitudinal bending under 
vehicle rolling wheel loads, thus it is double bending behavior. The MCS department at EPFL has 
installed electrical strain gauges on reinforcement bars at critical location. This monitored strain data 
is used as action effects to perform fatigue reliability analysis of the viaduct, a reliability framework 
presented in [41] is used for the purpose. 

4.1. Limit State Equation 

A limit state equation for fatigue failure of critical reinforcement in the viaduct is formulated 
based on the Palmgren-Miner rule [42,43] assuming linear damage accumulation, Equation (15), and 
[41,44]. 𝑔(𝑡) = Δ − ∑ ௑೙௡೔௧ଵ଴ച∙ ௞௝௜ୀଵ (𝑋௪𝑅஽∆𝑠௜)௠ = 0, (15)

where 𝑡 indicates time 0 ൏ 𝑡 ൏ 𝑇௅  in years, 𝑇௅ is the service life time of the structure, 𝑅஽ is modelling the ratio of design parameters, here the section modulus of the deck slab, Δ𝑠௜  is the stress range for the 𝑖th load bin. 
All other terms in the limit state equation are explained in Table 3. 

Table 3. Stochastic model for Wöhler curve. 

Parameter Distribution Mean  Standard 
Deviation Remark  𝛥  Lognormal 1 0.30 Model uncertainty related to PM Rule 1  𝑋௪  Lognormal 1 0.05 Uncertainty in strain measurements  𝑋௡  Lognormal 1 0.01 Uncertainty in number of vehicles  𝑙𝑜𝑔𝑘  Normal 18.77 0.07 Location parameter in Wöhler curve  𝑚  Fixed 5 --- Slope of Wöhler curve fixed to 5 2  𝜖  Normal 0  𝜎ఌ  Error term taken from Table 2  𝜎ఌ   Normal 0.39/0.21 3 0.06/0.004 3 

Standard deviation of error term taken 
from Table 2  𝜌௟௢௚௞,ఙఌ   Deterministic 

0.06/0.003 
3 

--- 
Correlation coefficient between location 

and standard deviation of error taken from 
Table 2 

1 model uncertainty obtained by fitting lognormal distribution to test data in [45]; 2 slope of Wöhler 
curve fixed to 5 as log 𝑘 and m are highly correlated with correlation coefficient equal to 0.9997; 3 two 
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values are used for analysis first one from MLM approach, while the second one is from Bayesian 
approach. 

4.2. Reliability Analysis 

The First Order Reliability Method (FORM) is used for reliability analysis [2,46]. An open-source 
MATLAB-based toolbox, namely the FERUM (Finite Element Reliability Using MATLAB), is used for 
performing all FORM calculations [47]. The cumulative (accumulated) probability of failure in time 
interval [0, t] is obtained by Equation (16): 𝑃ி(𝑡) = 𝑃(𝑔(𝑡) ≤ 0), (16)

The probability of failure is estimated by FORM [47]. The corresponding reliability index 𝛽(𝑡) 
is obtained by Equation (17): 𝛽(𝑡) = −𝜙ିଵ൫𝑃ி(𝑡)൯, (17)

where, 𝜙() is standardized normal distribution function.  
The annual probability of failure is obtained by: 𝛥𝑃ி(𝑡) = 𝑃ி(𝑡) − 𝑃ி(𝑡 − 𝛥𝑡), 𝑡 > 1𝑦𝑒𝑎𝑟, (18)

where Δ𝑡 = one year. The corresponding annual reliability index is denoted  𝛥𝛽. 
4.3. Reliability Results 

The cumulative reliability index along the service life of the structure is presented in Figure 8 for 
the case where uncertainty in vehicle number 𝑋௡ is 1% and CoV for log𝐾 is as 0.39 (MLM) and 0.2 
(Bayesian). 

 

Figure 8. Reliability index as function of time. 

Corresponding annual reliability index at 120 years is presented in Table 4. 
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Table 4. Annual reliability index as function of CoV of log𝑘. 

CoV of 𝐥𝐨𝐠𝒌  Annual Reliability Index at 120 Years 
0.39 (MLM) 3.90 

0.20 (Bayesian) 4.25 

The actual stress in slab of viaduct is very low, thus exhibiting a very high fatigue reliability. 
Current results are shown for the case of scaled stresses. Even after the scaling of the stresses annual 
reliability index is within acceptable levels, which is more than 3.7 (for the case of very high 
consequence and low efficiency of intervention, [48]). Furthermore, it can be seen from the results 
that CoV for 𝑙𝑜𝑔𝐾 has a very high influence on reliability index. Thus, estimating the CoV with great 
accuracy is very important in order to estimate the safety of the structures reasonably. 

5. Conclusions  

In this paper, for stochastic modeling of uncertainties for fatigue strength parameter, MLM as a 
common methodology is utilized to fit the statistical parameters in a regression model based on 
available test data. The Bootstrapping method is used to generate synthetic data. Example 
investigations in this paper indicate that Bootstrapping cannot be used if run-out data are to be 
accounted for. Thus, further steps are not proceeded to estimate statistical parameters. It should be 
mentioned that if the Bootstrapping method was fulfilled the requirement (random pattern), another 
methodology such as least square method or even Bootstrapping could be used for parameter 
estimation in the next step. Subsequently, the use of Bayesian inference with the Markov Chain 
Monto Carlo approach is studied. 

Reliability analysis of a selected detail in the Cret De l’Anneau Viaduct is used to illustrate and 
compare different stochastic models obtained by the statistical methods. The results obtained by 
MLM is used in reliability analyses and is assumed as a prior for Bayesian. The results show 
difference in the reliability indices, indicating the importance of accurate estimation of the model 
uncertainty of the SN-curve. The results emphasize the choice of statistical method as it influences 
the reliability analyses. In this case study, Bayesian provided better statistical uncertainty, hence 
better fatigue reliability assessment.  
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