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ABSTRACT

This paper contains a quantification and decision theoretical optimization of the pos-
terior utilities for several options for monitoring campaigns on the particular case of
fatigue life predictions of an orthotropic steel deck. The monitoring campaigns are de-
fined by varying monitoring durations and phases. The decision analysis is performed
with real data from the Structural Health Monitoring (SHM) of the Great Belt Bridge
(Denmark) which, among others, consist of measured strains, pavement temperatures
and traffic intensities. The fatigue loading prediction model is based on regression mod-
els linking daily averaged pavement temperatures, daily aggregated heavy-traffic counts
and derived S-N fatigue damages, all of them derived from the outcomes of different
monitoring campaigns. A probabilistic methodology is utilized to calculate the fatigue
reliability profiles of selected instrumented welded joints. The posterior utilities of SHM
campaigns are then quantified by considering the structural fatigue reliability, various
monitoring campaigns and the corresponding cost-benefit models. The decisions of
identifying the optimal monitoring campaign and of extending the service life or not
in conjunction with monitoring results are modelled. The optimal monitoring campaign
is identified - retrospectively - by maximizing the expected benefits and minimize risks
in dependency of the monitoring duration and the monitoring associated costs. The re-
sults, despite relying on a number of simplistic assumptions, pave the way towards the
use of pre-posterior decision support to optimise the design of monitoring campaigns for
similar bridges, with an overall goal to proof the cost efficiency of SHM approaches to
civil infrastructure management.

INTRODUCTION

Structural health monitoring (SHM) is widely used in all kinds of structures [1].
However, neither the value of SHM in general nor the discussion regarding the selection
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of optimal monitoring durations are normally addressed in quantitative terms. In many
cases, SHM systems are designed and installed based on engineering judgement and
experience, rather than on cost-efficiency considerations. Only recently it has been ac-
knowledged that the benefits of SHM can be quantified utilizing the concept of value of
information [2–5]. In this regard, reference [6] presented through quantifying the value
of SHM, that a highly industrial potential for substantial increased life cycle benefits can
be obtained. The above was also proved in [7] through quantifying the conditional value
of SHM data for the fatigue safety evaluation of a road viaduct. Moreover [8, 9] found
that sensor configuration can be optimized through the dynamic value of damage detec-
tion system information analysis. The present paper focus on optimizing SHM strategies
in terms of monitoring duration and phases. This is done through the posterior decision
analysis [10], which quantifies how much utilities can be achieved through improving
life- cycle integrity management based on obtained SHM information. By comparing the
posterior utilities of different SHM campaigns, the optimal strategy can be determined.
The above is illustrated with data from the Great Belt Bridge (Denmark), which is used
to derive different models for predicting remaining fatigue life.

The Great Belt Bridge is a suspension bridge in Denmark starting operation from
1998, with main span of 1624m and maximum hanger length of 177m (Figure 1). Its
cross-section is formed by a closed steel box girder with an orthotropic steel bridge deck
(OSD), formed by the longitudinal troughs and cross-beams spaced every 4 m. Extensive
fatigue analysis have been carried out to determine the fatigue life of selected welds of its
orthotropic steel deck such as the welds between the deck plate and the trough stiffeners
and at the trough splices. The designed fatigue life for the orthotropic welds was 100
years with different inspection interval for different weld details.

In 2007, after ca. 10 years of operation, an extensive Structural Health Monitoring
system was installed on the bridge, recording simultaneously strains at selected welded
joints of the OSD and pavement temperatures for design verification. Traffic intensities
have been captured at the toll system since bridge commissioning. The monitoring data
was used to develop data-based models [11] and the fatigue life of OSD welded joints
was estimated through a probabilistic methodology in [12]. The monitoring data was
divided into different data sets in [13] to predict the fatigue life of OSD welded joints
through the probabilistic methodology described in [12]. Following the research results
in [11], this paper addresses 1) the quantification of the posterior utilities of the different
monitoring campaigns defined in terms of different durations, 2) the presentation of a
theoretical framework relying on a number of simplifying assumptions to solve the de-
cision problem on whether to extend the fatigue service life of the welds or not through
development of a new maintenance strategies within life-cycle asset integrity manage-
ment and 3) the determination of optimal monitoring strategies in terms of the number of
monitoring phases, durations and intervals to predict fatigue life on OSD welded joints.

SHM PROBABILISTIC FATIGUE MODEL

The SHM system on the Great Belt bridge consists, among others, of pavement
temperature monitoring system, traffic monitoring system (used by the toll system) and
strain monitoring system. Four temperature monitoring sensors are embedded into two



Figure 1. Illustration of Great Belt Bridge.

Figure 2. Illustration of Illustration of
monitoring system

Figure 3. Strains gauges at welds

different cross-sections of the pavement and record the temperature every 5 minutes.
The crossing vehicles are automatically classified according to their dimensions at the
toll system on an hourly basis. The strain monitoring system instrumented in a cross-
section, consisting of 15 uniaxial strain gauges (Figure 2), in which 10 gauges (i.e.
1,3,4,6,7,9,10,12,13,15) monitor the transverse nominal strains at the through to deck
weld, and 5 gauges (i.e. 2,5,8,11,14) monitor the longitudinal nominal strains at trough
splice welds (Figure 3). Strain gauges 1to 9 are placed under the slow traffic lane which
pass by the heavy vehicles, whereas the rest are placed under the fast traffic lane.

A probabilistic methodology was introduced in [11] to calculate the fatigue reli-
ability profiles of monitored welded joints, based on a succession of regression and
time-series models considering daily averaged pavement temperatures, daily aggregated
heavy-traffic and associated S-N fatigue damages conservatively calculated by consider-
ing single-sloped S-N curves and following Miners accumulation rule. The fatigue limit
state function associated with the above is [11, 12]:

g (X, t) = ∆− 1

A

t∑
t=0

B∆t(t)(

p+1∑
i=1

θi−1T
i−1
∆t (t) + tn−p−1stot) (1)

where t is time, X is the vector of random variables, ∆ is the Miner’s sum at failure,
A is the material parameter defining the SN fatigue curve, B∆t(t) is the daily-aggregated
heavy traffic counts, T∆t(t) is the daily averaged pavement temperatures, θ is the param-
eters of the regression models, n is the number of data points corresponding to the train-
ing data set associated with the regression mode, p is the order of the regression model,



tn−p−1 is a t-distribution with n − p − 1 degrees of freedom and stot is the estimate of
the total variance of the regression model at a given T∆t(t). The weld will fail when
the accumulated fatigue damages is larger than the Miners sum at failure. So that the
probability of failure can be modeled through Monte Carlo Simulation as:

P (F ) = P (g (x, t) ≤ 0) (2)

The variables in the probabilistic model are simulated following the model described in
Table I. Apart from considering the S-N fatigue parameter and Miner’s sum at failure as
random variables not linked with SHM data, SHM data is used to derive 3 different mod-
els for fatigue damage simulation: i) regression models for SN fatigue damage prediction
(here the uncertainties are captured by the prediction bands of the models presenting de-
scribed by tn−p−1stot in Eq.1, ii) time-series models for temperature prediction and iii)
time-series models for traffic prediction. The uncertainties of the time-series models are
captured by the random error process associated to each model and characterized via
SHM data.

The prediction of fatigue life of all the welds under monitoring of the strain gauges
is presented in [12]. The probability of failure of welds will increase with time. In this
paper, it is assumed that when reliability profiles reach a certain target probability, it
is required to take action. In [12] it is pointed out that the SG8 (measured the trough
splice weld) will reach the target reliability first. This behavior can be easily explained
as this weld is under the slow traffic lane where heavy vehicles run inducing higher
stress cycles than at the fast lane. The discussion of SHM campaigns in the following
is based on the training data sets from SG8. The reference monitoring option consists
of the data set between February 2012 to July 2012, which is assumed to capture the
complete temperature range within a typical year due to the annual repeatability of the
pavement temperature distribution [13]. According to the different number of monitor-
ing phases and time duration per phase, four different monitoring strategies in terms of
time durations are discussed as shown in Table II. We chose the target probability as
10−4(β=3.7) according to [15] considering normal relative cost of safety measure and
minor consequences of failure. For the purpose of this paper, the weld is assumed to get
rehabilitation after reaching the target probability. It is also worth noting that the fatigue
reliability profiles are very conservative given the consideration of single-slopped S-N
curves with no cut-off limit. The above assumptions highlight the fact that the results
presented in the paper shall be read as an illustration of the presented methodology for
assessing optimal monitoring strategies.

QUANTIFICATION THE POSTERIOR UTILITIES OF SHM CAMPAIGNS

TABLE I. VARIABLES OF THE PROBABILISTIC MODEL
Parameter Symb Distribution/Expression
Trough-to-deck weld fatigue parameter A LN(7.30E11, 4.23E11) [14, 15]
Trough-splice weld fatigue parameter A LN(2.09E12, 1.21E12) [14, 15]
Miner’s damage at failure ∆ LN(1.0,0.3) [16]
Daily heavy traffic counts B∆t(t) Time series model from[11]
Daily-averaged pavement temperatures T∆t(t) Time series model from[11]



Figure 4. Illustration of decision tree of posterior decision analysis.

In this paper, we want to investigate whether to extend the service life to 120 years or
stay to 100 year. Given that different monitoring campaigns will provide different pre-
dictions of fatigue reliability profiles, we also want to know which monitoring campaign
can achieve maximum utilities/benefits for the life-cycle integrity management. A pos-
terior decision analysis is introduced to solve the problem. This is done by considering
the fatigue reliability profiles, various monitoring scenarios as well as the corresponding
cost-benefit models. The illustration of the decision tree process is shown in Figure 4
with ai denoting the choice of the actions such as a0 for a service life of 100 years and a1

to extend service life to 120 years. For different choice of the service life, the integrity
of the welds needs to be managed causing planned rehabilitation costs CR. The states
of the welds θi are defined as θ1 safe and θ2 failure. It will fail when the accumulated
fatigue damages are larger than Miners damage at failure. If the weld stays safe, the
bridge will be operated normally with annual benefits B. If the weld fails, unscheduled
repair events will be required, so that and there will be a fatigue failure costs CF which
will be the sum of the unscheduled repair costs and the costs of interrupting normal traf-
fic during repair activity. ei represents the different information strategies, for example
e0 denotes reference SHM campaigns, e1 doing SHM with option 4.1, etc. Considering
different monitoring phases, monitoring duration and period, there will be a different
cost of monitoring CM . We use ui to present the expected maximum utilities regarding
different actions under different strategy information.

ui = max[ui|a0 , ui|a1 ] (3)

The utility branches when staying service life for 100 years with SHM ui|a0 are calcu-
lated:

TABLE II. SHM CAMPAIGNS
Option Number of moni-

toring phase
Time duration per
Phase [days]

Total dura-
tion [days]

Percentage data
used: %

Ref 1 168 168 100
4.1 2 7 14 8.3
4.2 2 14 28 16.6
4.3 2 28 56 33.3
4.4 2 42 84 50



Figure 5. Prediction of probability of fatigue
failure during service life of 120 years and

with target probability

Figure 6. Probability of fatigue failure if
doing nothing or rehabilitation given

reference SHM data
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In Eq.4, B is the benefit, CF is the cost of failure, CR is the cost of planned rehabil-
itation which is dependent on the number of rehabilitation times Na0 during 100 years
of service life and discounted to the year of rehabilitation TR. CM is the cost of moni-
toring which is dependent on total monitoring duration Ni and discounted to the year of
monitoring TM . γ is discounting rate, P (F |Mei) is the posterior probability of failure
given monitoring during service life. The utility branches when extending service life to
120 years with SHM ui|a1 are calculated as:
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In Eq.5, the number of planned rehabilitation times Na1 will be changing corre-
sponding to 120 years of service life. The posterior probability of failure after monitor-
ing P (F |Mei) is calculated following the probabilistic fatigue model shown in Figure
5. The posterior probability of failure if doing nothing or after rehabilitation given refer-
ence SHM data is shown in Figure 6. Assuming the normalized benefit B is 20 per year,
the cost of failure CF is 100, the cost of rehabilitation CR is 200, the cost of monitoring
CM is 0.5 per day, the discounting rate γ is 0.02 per year, the calculation results are



Figure 7. Posterior utility calculation between
two choice of actions among different SHM

campaigns

Figure 8. Maximum posterior utilities
between two choice of actions among

different SHM campaigns

shown in Figure 7. In all cases it is recommended to extend service life to 120 years
with monitoring. The summary of utilities in Figure 8 shows that option 4.1 will be
recommended due to the highest utility. In this case, a long monitoring duration will
reduce the risk but increase the cost of monitoring, which leads to an overall reduction
in utility. The additional cost of longer monitoring is here not justified because the risk
decrease does not compensate for the increase of the cost. The optimal SHM strategy is
thus short-term monitoring. However, the results can be sensitive to the variation of cost
and benefits models, which needs to be further investigated.

CONCLUDING REMARKS

This paper provides an approach to optimize monitoring strategies through the quan-
tification of the posterior utilities of different monitoring campaigns. This paves the way
towards the use of pre-posterior decision support to optimize the design of monitoring
campaigns for similar bridges, with an overall goal to maximize the expected benefits
and minimize the risks throughout the service life of structures. However, this paper
only considers the fatigue reliability and life cycle management of welds. Future re-
search could investigate the fatigue reliability of the system level as well as the need
for probabilistic formulations of the cost function. Similarly, application-specific cost
functions should be strengthened and how to do a pre-posterior decision analysis even
before the implementation of SHM should be discussed in the future.
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9. Long, L., S. Thöns, and M. Döhler. 2018. “The effects of SHM system parameters on the
value of damage detection information,” in 9th European Workshop on Structural Health
Monitoring (EWSHM 2018).

10. Schlaifer, R. and H. Raiffa. 1961. Applied statistical decision theory.
11. Farreras Alcover, I. 2014. Data-based models for assessment and life prediction of monitored

civil infrastructure assets., Ph.D. thesis, University of Surrey.
12. Farreras-Alcover, I., M. K. Chryssanthopoulos, and J. E. Andersen. 2017. “Data-based mod-

els for fatigue reliability of orthotropic steel bridge decks based on temperature, traffic and
strain monitoring,” International Journal of Fatigue, 95:104–119.

13. Farreras-Alcover, I., J. E. Andersen, and N. McFadyen. 2016. “Assessing temporal require-
ments for SHM campaigns,” Proceedings of the Institution of Civil Engineers-Forensic En-
gineering, 169(2):61–71.

14. 1993-1-9, E. 2005, “Eurocode 3: Design of steel structures–Part 1-9: Fatigue,” .
15. JCSS, J. 2001. “Probabilistic model code,” Joint Committee on Structural Safety.
16. Wirsching, P. 1995. “Probabilistic fatigue analysis,” in Probabilistic structural mechanics

handbook, Springer, pp. 146–165.


