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Abstract  
Stochastic modeling of uncertainties for fatigue strength parameters is vital step as basis for 

reliability analyses. In this paper, the Maximum Likelihood Method (MLM) is used for fitting 

the statistical parameters in a regression model for the fatigue strength. Furthermore, 

application of the Bootstrap method is investigated. The results indicate that the latter 

methodology does not work well in the considered case study because of runout tests within 

the test data. Moreover, use of Bayesian inference with Markov Chain Monto Carlo 

implementation is studied. These results indicate reduction in the uncertainty and thus better 

parameter estimations. 
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1. Introduction  

This paper presents statistical analyses performed 

on fatigue data obtained from literature [1], where 

laboratory fatigue tests were performed on 

reinforcement bars. 

The statistical analyses are the first step for 

stochastic modeling of the material fatigue 

uncertainties, which next can be used as basis for 

a probabilistic modelling and reliability analysis of 

structures with reinforced concrete components. 

The Maximum Likelihood Method (MLM) is used 

for fitting the statistical parameters [2] in a 

regression model for the fatigue strength. 

Typically, the statistical analyses are based on a 

limited number of data, for which MLM can 

provide estimates of the uncertainties associated 

with each of these parameters and correlation 

between the parameters [3]. 

This paper also presents use of the Bootstrapping 

method, which is applied to generate synthetic data 

with the available measurements from the lab. The 

results indicate that this methodology does not 

work well in this case because of runout tests in the 

test database. Finally, the parameters are re-

estimated along with their uncertainties using the 

synthetic data with results showing that the 

uncertainty is increased using this method. 

This paper also presents application of Bayesian 

inference with a Markov Chain Monto Carlo 

implementation. These results show reduction in 

the uncertainty and thus better parameter 

estimation.  

 

2. Materials and methods 
 

2.1. Case study 

In this paper, test data on fatigue strength test for 

steel reinforcement from Hansen and Heshe [1] is 

utilized for statistical analysis to determine typical 

fatigue strength uncertainties. The steel reinforcing 

bars with 16 mm of diameter is chosen and the 

yield strength is around 570 MPa. 

The uncertainty modelling is important in order to 

determine the characteristic fatigue design curves 

as well as to perform reliability analyses and risk 

analysis. 

 

2.2. Statistical analysis of fatigue data of 

steel reinforcing bars 

For steel reinforcement bars used in concrete S-N 

curves are recommended by various international 



 

2 
 

codes (Model code 2010, Model code 1990, DNV 

OS C 502 and EN 1992-1 etc.) [4] [5] [6] [7] 

written as: 

 
𝑁𝑖 = 𝐾 ×  ∆𝑠𝑖

−𝑚                                      (1) 

or 

log(𝑁𝑖) = log(𝐾) − 𝑚𝑙𝑜𝑔(∆𝑠𝑖)              (2) 

 
where 𝑁𝑖 is the number of cycles to failure with 

stress range ∆𝑠𝑖 in test number 𝑖, 𝐾 and 𝑚 are 

fatigue parameters to be fitted by e.g. MLM using 

the tests results. 

To account for uncertainties in the fatigue life, 

Equation (2) can be rewritten [8]: 

 
log(𝑁𝑖) = log(𝐾) − 𝑚𝑙𝑜𝑔(∆𝑠𝑖) + 𝜀     (3) 

 
where 𝜀 represents the uncertainty of the fatigue 

life model and is modelled by a stochastic variable 

with mean value equal to zero and standard 

deviation 𝜎𝜀. 𝜀 is often assumed Normal 

distributed.  

The Likelihood function to be used to estimate the 

optimal values of the parameters 𝐾, 𝑚 and 𝜎𝜀 from 

test data becomes the following Equation(4): 

 
𝐿(𝐾, 𝑚, 𝜎𝜀) =  ∏ 𝑃[log(𝐾) − 𝑚 log(∆𝑠𝑖) +

𝑛𝐹
𝑖=1

𝜀 = log(𝑛𝑖)] × ∏ 𝑃[log(𝐾) −
𝑛𝐹+𝑛𝑅
𝑖=𝑛𝐹+1

𝑚 log(∆𝑠𝑖) + 𝜀 > log (𝑛𝑖)]                       (4) 

Here 𝑛𝑖 is the number of stress cycles to failure or 

to run-out with stress range ∆𝑠𝑖  in test number i. 

𝑛𝐹 is the number of tests where failure occurs, and 

𝑛𝑅 is the number of tests where failure did not 

occur after 𝑛𝑖 stress cycles (run-outs). The total 

number of tests is 𝑛 = 𝑛𝐹 + 𝑛𝑅. 𝐾, 𝑚 and 𝜎𝜀 are 

obtained from the optimization problem 

𝑚𝑎𝑥𝐾,𝑚,𝜎𝜀
𝐿(𝐾, 𝑚, 𝜎𝜀), which can be solved using 

a standard non-linear optimizer. 

The two terms in the previous Equation can be 

obtained from Equation (5): 

 

𝑃[log(𝐾) − 𝑚𝑙𝑜𝑔(∆𝑠𝑖) + 𝜀 = log(𝑛𝑖)] =

1

√2𝜋𝜎𝜀
exp (−

1

2
(

log(𝐾)−𝑚𝑙𝑜𝑔(∆𝑠𝑖)−log(𝑛𝑖)

𝜎𝜀
)

2

)  

𝑃[log(𝐾) − 𝑚𝑙𝑜𝑔(∆𝑠𝑖) + 𝜀 > log(𝑛𝑖)] =

𝛷(
log(𝐾)−𝑚𝑙𝑜𝑔(∆𝑠𝑖)−log(𝑛𝑖)

𝜎𝜀
)  (5) 

𝐾, 𝑚 and 𝜎𝜀  are parameters determined using a 

limited number of data; consequently, they are 

subject to statistical uncertainty. Since the 
parameters are estimated by the Maximum-

Likelihood Method, they become asymptotically 

(number of data should be > 25 – 30) Normal 

distributed stochastic variables with expected 

values equal to the maximum-likelihood estimator 

and a covariance matrix equal to: 

𝐶𝐾,𝑚,𝜎𝜀
= [−𝐻𝐾,𝑚,𝜎𝜀

]
−1

=

[

𝜎𝐾
2 𝜌𝐾,𝑚𝜎𝐾𝜎𝑚 𝜌𝐾,𝜎𝜀

𝜎𝐾𝜎𝜎𝜀

𝜌𝐾,𝑚𝜎𝐾𝜎𝑚 𝜎𝑚
2 𝜌𝑚,𝜎𝜀

𝜎𝑚𝜎𝜎𝜀

𝜌𝐾,𝜎𝜀
𝜎𝐾𝜎𝜎𝜀

𝜌𝑚,𝜎𝜀
𝜎𝑚𝜎𝜎𝜀

𝜎𝜎𝜀
2

]  

                                                              (6) 

𝐻𝐾,𝑚,𝜎𝜀
is the Hessian matrix with second-order 

derivatives of the log-likelihood function. 𝜎𝐾, 𝜎𝑚, 

and 𝜎𝜎𝜀
denote the standard deviations of 𝐾, 𝑚 and 

𝜎𝜀 , respectively, and e.g. 𝜌𝐾,𝑚 is the correlation 

coefficient between 𝐾and 𝑚. 

2.3. Bootstrap Methodology 

One of the key assumptions for using the MLM 

method as well as its simplified version, the 

nonlinear least squares method, is that the 

underlying distribution of errors is assumed to 

follow a normal (Gaussian) distribution. 

In many practical applications, however, this 

condition is rarely satisfied. Hence, theoretically 

the MLM method for parameter estimation cannot 

be applied without compromising its assumptions, 

which may lead to over or underestimation of the 

parameter estimation errors and their covariance 

structure. 

An alternative to this approach is the bootstrap 

method developed by Efron [9], which removes 

the assumption that the residuals follow a normal 

distribution. Instead, the bootstrap method works 

with the actual distribution of the measurement 

errors, which are then propagated to the parameter 

estimation errors by using an appropriate Monte 

Carlo scheme. 

Fatigue tests take very long time as it would take 

millions of cycle for failure of one specimen and 

changing frequency of load application could have 

different results. The Bootstrap method is used to 

generate more data to estimate parameters, and 

next, to estimate the parameter uncertainties.  
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Residuals are estimated by subtracting calculated 

number of cycles to failure from observed number 

of cycles (Residuals = N_Exp – N_Cal). These 

residuals are plotted in Figure 1 considering the 

case when runouts are ignored in the calculation. 

This histogram shows that the assumption of 

residuals as white noise is true and it’s well 

distributed with mean zero. In this case, the 

bootstrap methodology can be used, but in reality 

in future calculations it is mandatory to consider 

runouts as well which the bootstrap technique 

cannot fulfill as seen in Figure 2. 

 

Figure 1: Histogram for Residuals without runouts 

 

 
Figure 2: Histogram for Residuals with runouts 

 

If we plot the residuals along its own index, they 

are random without considering runouts, this is 

basic requirement for using Bootstrap 

methodology that the residuals should be random. 

Random in this context mean that residuals should 

not follow a pattern. By looking figure 3 which is 

without consideration of run-outs, residuals do not 

follow any pattern.  

 
Figure 3: Residual Pattern without run-outs 

 

Whereas, in Figure 4 with runouts, residuals are 

following a pattern, so the first requirement to use 

Bootstrapping will fail.  

 

Figure 4: Residuals Pattern with run-outs 

As explained above generating synthetic data is 

possible when the residuals do not follow a pattern, 

so in this case study Bootstrap method can not be 

used.   

2.4. Bayesian inference with Markov Chain 

Monto Carlo implementation 

2.4.1 Bayesian updating MCMC theory 

Bays’ rule 

Bays’ rule provides the mathematical basis to 

update beliefs (prior information) about a variable, 

θ, given observations, y. Mathematically Bays’ 

rule calculates the posterior probability of θ given 

observations, 𝑝(𝜃|𝑦) as follows 

𝑝(𝜃|𝑦) =
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
                                       (7) 

Bayesian inference for predictive distributions 

𝑝(𝑦∗|𝑦) = ∫ 𝑝(𝑦∗|𝜃)𝑝(𝜃|𝑦)𝑑𝜃               (8) 
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Future predictions are modelled using the updated 

probability  𝑝(𝜃|𝑦) similar to making a prediction 

for y* using a single value of θ in the traditional 

sense.  

This integral is calculated using Monto Carlo 

simulations strategies such as Markov-Chain 

Monto-Carlo algorithms. 

Markov chain simulations in brief 

By definition Markov chain simulation is a 

sequence of random variables θ1, θ2, θ3, ..., for 

which for any k, the distribution of θk depends only 

on the most recent one θk-1. 

In practice, several independent sequences of 

Markov chain simulations are created. 

Metropolis algorithm 

The Metropolis algorithm is used for the transition 

distribution. It is an adaption of a random walk that 

uses an acceptance / rejection rule to converge to 

the specified target distribution. The step by step 

procedure is as follows [4]: 

1. Select initial parameter vector  

2. Iterate as follows for k=1, 2, 3….. 

a. Create a new trial position θ* = 

θk-1 + Δθ, where Δθ is randomly 

sampled from jumping 

distribution q(Δθ). 

b. Create metropolis ratio 

𝑟 =
𝜋((𝜃∗

|𝑦))

𝜋((𝜃𝑘−1
|𝑦))

                       (9) 

3. Accept new sample if: 

𝜃𝑘 =

{
𝜃∗         with probability  min(𝑟, 1)

𝜃𝑘−1                                     otherwise
(10) 

 

*Note that this requires that the jumping 

distribution is symmetric: q(θ*, θk-1)=q(θk-1, θ*); if 

the jumping distribution is not symmetric then the 

Metropolis-hasting algorithm can be used where 

both side jumping distributions are part of the 

ratio.  

Implementing Bayesian updating using Markov 

Chain Monte Carlo: 

Since the posterior distribution can be calculated 

by,  

𝑝(𝜃|𝑦) =
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
                            (11)  

where p(y) is a normalizing constant it also follows 

that the posterior density can be written: 

𝑝(𝜃|𝑦) ∝ 𝑝(𝜃)𝑝(𝑦|𝜃)                        (12) 

i.e. the posterior distribution is proportional to 

product of the prior and the likelihood functions.  

It is assumed that the prior distribution is the 

multivariate Normal distribution, then the 

likelihood function is defined by: 

𝑝(𝑦|𝜃, 𝜎2) =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

1

2𝜎2 𝑆𝑆(𝜃)) (13) 

where,  

𝑆𝑆(𝜃) = ∑ (𝑦 − 𝑓(𝑆, 𝜃))
2𝑛

𝑖                  (14)  

The Metropolis ratio becomes: 

𝑟 =
𝑝(𝜃∗

|𝑦, 𝜎2
)

𝑝(𝜃𝑘−1
|𝑦, 𝜎2

)
= 𝑒𝑥𝑝 (−

1

2𝜎2 (𝑆𝑆(𝜃∗) −

𝑆𝑆(𝜃𝑘−1)))    (15) 

Conversion statistics by potential scale reduction 

factor, R 

Reference is made to [10] for theory and more 

detailed descriptions, the scale reduction factor R 

indicate the potential scale reduction factor for the 

current distribution if the sampling were to 

continue to infinity. The sampling is said to 

converge if R is close to one. 

Therefore the number of simulations should be 

chosen such that R becomes as close to one as 

possible and thereby the Monte Carlo error close 

to zero. 

The parameters fitted are K and m. The correlation 

between them is illustrated in Figure 5. In this 

context the Monte Carlo simulation strategy like 

the Markov Chain Monte Carlo algorithm is used. 

Furthermore, Metropolis algorithm is applied for 

obtaining the transition distribution. Based on the 

Reference [10], the scale reduction factor R 

is also calculated. 
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Figure 5: correlation between k and m 

 

3. Results and discussions 

The results provide estimates of the statistical 

parameters by MLM accounting for runouts.  

Table 1 shows a comparison between values based 

on the Eurocode and parameters estimated by 

MLM assuming that the slope of Wohler curve is 

fixed to 5, see Figure 5. If a 5% quantile is 

estimated using the MLM results then log k = 18.1 

is obtained; which is on the safe side compared to 

the Eurocode value. 

The Bootstrap method is generally beneficial 

especially in cases where measurements are   

costly or time consuming [11]. The  investigations 

in this paper indicate that the Bootstrap method 

applied for the fatigue test can not be used because 

of runouts implying that the  residuals are not 

random.  

Markov Chain Monte Carlo simulation results 

show that log k is mostly in the interval 18-19, and 

m around 5, which is the same as the results 

obtained from MLM. 

Posterior marginal density function is also 

depicted in Figure 7. 

Uncertainties associated with all these statistical 

parameters are reduced by using Bayesian 

inference. For instance log(k) is calculated 18.72. 

Results is shown in Table 1 in comparison with 

MLM method. 

Using results obtained from MLM, reliability in a 

bridge as a case study is studied in [12].  

 

 

 

 

 

 

Table 1: Results 

Parameter 

Value 

based on 

Eurocode 

Mean 

by 

MLM 

Mean by 

Bayesian  

Standard 

Deviation 

by MLM 

Standard 

Deviation 

by 

Bayesian 

Distribution Remark 

𝜀 0 0 0   Normal Error term 

𝜎𝜀  0.39 0.21 0.06 0.09 Normal 

Standard 

deviation of 

error term 

log 𝑘 17.054 18.77 18.72 0.07 0.05 Normal 

Location 

parameter in 

Wohler 

curve 

𝑚 5 
Fixed 

= 5 
5   

Fixed / 

Deterministic 

Slope of 

Wohler 

curve 

𝜌log 𝑘,𝜎𝜀   0.06 0.04   Deterministic 

Correlation 

coefficient 

between 

location and 

standard 

deviation of 

error 
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Figure 6: Markov Chain Simulation 

 

Figure 7: Posterior marginal density functions 

 

Acknowledgements 
The project INFRASTAR (infrastar.eu) has 

received funding from the European Union’s 

Horizon 2020 research and innovation programme 

under the Marie Skłodowska-Curie grant 

agreement No 676139. The grant is gratefully 

acknowledged. 

References 
 

[1]  Hansen, L. P., & Heshe, G., "Static, Fire 

and Fatigue Tests of Ultra High-Strength 

Fibre Reinforced Concrete and Ribbed Bars," 

Journal of Nordic Concrete Research, pp. 17-

37, 2001.  

[2]  J. D. Sørensen, Notes in Structural 

Reliability Theory and Risk Analysis, 

Aalborg University, 2011.  

[3]  S. G. a. W. C., Non-linear regression, 

New York: Wiley, 1989.  

[4]  Metropolis, N., Ulam, S., "The Monte 

Carlo method," Journal of the American 



 

7 
 

Statistical Association, vol. 44, no. 247, pp. 

335-341, 1949.  

[5]  MC1990, FIB Model Code for concrete 

structures 1990, Berlin, 1993.  

[6]  MC2010, FIB Model Code for concrete 

structures 2010, Berlin: Ernst & Sohn, 2013.  

[7]  S. Høvik, DNV OS C 502, DNV OS C 

502, Offshore concrete structures, DNVGL, 

2012.  

[8]  S. M´arquez-Dom´ınguez, Reliability-

Based Design and Planning of Inspection and 

Monitoring of OffshoreWind Turbines, 

Aalborg: Aalborg University, 2013.  

[9]  B. Efron, "Bootstrap methods: another 

look at the jackknife," The annals of Statistics, 

1979.  

[10]  Gelman, A., Carlin, J. B., Stern, H. S., 

Dunson, D. B., Vehtari, A., & Rubin, D., 

Bayesian Data Analysis, New York: A 

CHAMPMAN & HALL BOOK, 2003.  

[11]  Sin, G., & Gernaey, K. V., " Data 

Handling and Parameter Estimation," 

Experimental Methods in Wastewater 

Treatment, vol. 281780404745, 2016.  

[12]  Mankar A., Rastayesh S. &. Sørensen, 

J.D, "Fatigue Reliability analysis of Cret De 

l’Anneau Viaduct: a case study," in IALCCE 

2018, Ghent, 2018.  

 

 

 
 


