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Abstract

Damage detection systems (DDSs) provide information on the integrity of
structural systems in contrast to local information from inspections or non-
destructive testing (NDT) techniques. In this paper, an approach is developed
that utilizes DDS information to update structural system reliability and
integrate this information into risk and decision analyses. The approach
includes a novel performance modelling of DDSs accounting for the structural
and measurement system characteristics, the damage detection algorithm
(DDA) precision including type I and II errors. This DDS performance
modelling provides the basis for DDS comparison and assessment in
conjunction with the structural system performance including the damage and
failure state dependencies. For updating of the structural system reliability, an
approach is developed based on Bayesian updating facilitating the use of DDS
information on structural system level and thus for a structural system risk
analysis. The structural system risk analysis encompasses the static, dynamic,
deterioration, reliability and consequence models, which provide the basis for
calculating the direct risks due to component failure and the indirect risks due
to system failure. Two case studies with the developed approach demonstrate a
potential risk reduction and a high Value of DDS Information.

Keywords: damage detection; value of information; structural systems; damage
detection uncertainty modelling, structural system updating.

Introduction

Damage detection systems (DDSs)
provide information about the integ-
rity and performance of structural
systems. The performance of a struc-
tural system is characterized by its
safety, i.e. the system reliability and
risks, and its functionality namely the
associated expected benefits and
costs. Structural system reliability is
generally modelled with failure and
damage mechanisms that are based
on static and dynamic system behav-
iour. These mechanisms generally
have a statistical dependence caused
by common influencing factors such
as environmental conditions, pro-
duction and construction processes
and material characteristics.1–3

Damage detection information is
characterized by providing an indi-
cation of damage of a structural
system subjected to a finite precision.4

The damage detection information
provided by a measurement system
and a damage detection algorithm
(DDA) refers to a change in the

structural system characteristics in
relation to a reference state of the
structural system.5,6 Damage detection
information thus accounts for the
dependencies in the entire structural
system.

Both structural system performance
models and DDAs have progressed
significantly but separately in the scien-
tific literature in recent decades.5,7–12

However, it has been demonstrated
that structural system identification
based on response measurements can
be combined with the updating of
structural reliability and that such
information can contribute to the accu-
racy of the structural condition and
thus to structural safety.13

This paper thus focuses on: (a) expli-
citly modelling the characteristics of a
structural system and its DDS, includ-
ing the costs, consequences and func-
tionalities, (b) utilizing the DDS for
updating the structural system
reliability, and (c) identifying the con-
ditions under which DDS information
may have a high value by utilizing

Bayesian decision analysis. The devel-
oped approaches are elaborated with
two case studies, namely (1) an
example focusing on how the structural
system reliability can be updated and
how a risk reduction can be achieved
and (2) a case study containing a
Value of DDS Information analysis
of a bridge girder under high
degradation.

Structural Performance
Modelling, Inspection and
Damage Detection
Performance Modelling

Structural System Performance and
Risk Modelling

Structural system reliability and risk
are described by means of structural
system theory, which is based on the
probabilistic mechanical behaviour of
the system in conjunction with its
loading, resistance and deterioration
models and the quantification of the
system risks and utilities in conjunction
with a consequence model.

Structural failure can be caused by an
extreme static or dynamic loading of
the system and/or its components. An
extreme structural system loading
implies a high statistical dependence
of the component loadings. The depen-
dence of the component resistances is
governed by the production processes
(e.g. section properties and material
parameters) and the construction
process (e.g. imperfections) of the
structure.1 Deterioration may cause
damage to the structural system and
can affect the entire system or occur
at different locations and in different
time periods, depending on the
material and the nature of the
damage mechanism. The spatial and
componential dependence of damage
mechanisms can thus vary significantly,
such as for example in the fatigue of
steel structures.14 The failure of a struc-
tural system and/or its components
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caused by damage mechanisms thus
rely on the structural system character-
istics and the loading, resistance and
damage mechanism dependencies.9

The performance of a structural system
both in regard to system failure and
system damage can be described with
logical systems, Daniels systems and
Bayesian networks.7,15,16 In general,
the probability P(FS) of a structural
system failure is calculated by integrat-
ing the joint probability density over
the space of the system failure VFS :

P(FS) =
∫
VFS

fX(x)dX (1)

where the system failure space VFS is
defined with limit state functions
dependent on the vector of random
variables X. The structural risks can
then be calculated with the nc com-
ponent and system probabilities of
failure (P(Fi) and P(FS)) and the con-
sequences of component and system
failure (Cc and CS). The risk may be
classified into direct risk due to com-
ponent failure and indirect risk due to
system failure (RD and RID) as
follows17:

R = RD + RID

=
∑nc
i=1

P(Fi) · Cc + P(FS) · CS (2)

Damage Detection

Automatic damage detection
methods in a structural health moni-
toring (SHM) context are based on
the chosen measurement technology
for the desired monitoring aim.4, 12

To illustrate the integration of
damage detection information into
the performance analysis of a struc-
ture, a vibration-based damage
detection method is considered in
the following.

Vibration monitoring is one of the best
known and most well-developed tech-
niques for long-term SHM and is
recognized as an addition or alterna-
tive to visual inspections and the
manual performance of local non-
destructive testing (NDT).4,5,18,19 The
rationale is that damage has an effect
on the structural stiffness, and thus on
the modal parameters (modal frequen-
cies, damping ratios and mode shapes)
which characterize the dynamics of the
structure. A network of vibration

sensors (usually accelerometers) is
attached to the structure to continu-
ously measure the structural vibration
responses to ambient excitation like
wind, traffic, waves and other forces.
Changes in the measured signals with
respect to the dynamic characteristics
of the structure then indicate the
damage that these forces might have
caused. Since changes in environ-
mental conditions (such as tempera-
ture fluctuations) also lead to changes
in the signals, they must be accounted
for.20,21

Methods for vibration-based damage
detection compare the measurement
data from the (healthy) reference
state of the structure with data from
the current, potentially damaged
state, and an alarm is raised if the
difference between both states
exceeds a threshold. There are many
methods for damage detection in this
context.6 For example, a straightfor-
ward approach is to identify and
directly compare the modal par-
ameters from measurements of both
the reference and current states.18

Other methods indirectly compare
current measurements to a reference
in a statistical difference measure
without modal parameter identifi-
cation. For instance, such methods
include non-parametric change detec-
tion based on novelty detection,22

Kalman filter innovations,23 methods
from machine learning4 and many
more. Also belonging to this class of
methods, statistical subspace-based
damage detection methods offer a flex-
ible and well-founded theoretical fra-
mework that is used in this
paper.10,11,19,24,25

In the following, the subspace-based
DDA is introduced as an example of
a global automated damage detection
method. With this method, vibration
measurements from the current
system are compared to a reference
state in a subspace-based residual
vector. In a hypothesis test, the uncer-
tainties of the residual are taken into
account and the respective x2 test stat-
istic is compared to a threshold in order
to decide whether or not the structure
is damaged. Based on these properties,
the x2 test statistic is considered as the
damage indicator value (DIV) for
damage monitoring.

Dynamic Structural System Model

The behaviour of the monitored struc-
ture is assumed to be described by the

following linear time-invariant dyna-
mical system:

Mz̈(t)+ Cż(t)+Kz(t) = vF(t) (3)

where t denotes continuous time, M, C
and K [ Rm×m are the mass, damping
and stiffness matrices, the vector
z [ Rm collects the displacements of
the m degrees of freedom of the struc-
ture and vF(t) is the external force that
is usually unmeasured for long-term
monitoring. Observing the system
described by Eq. (3) with a set of r
acceleration sensors yields the follow-
ing measurements:

y(t) = Lz̈(t)+ e(t) (4)

where y [ Rr is the measurement
vector, the matrix L [ Rr×m indicates
the sensor locations and e is the
measurement noise.

Measurements are taken at discrete
time instants t = kt, where k is an
integer and τ is the time step. A
sampling model consisting of Eq. (3)
and Eq. (4) at the rate 1/τ and trans-
formed into a first-order system yields
the following discrete-time state space
model:

xk+1 = Axk + vk
yk = Cxk + wk

(5)

where the states, outputs, state tran-
sition matrix and output matrix are as
follows:

xk = z(kt)

ż(kt)

[ ]
,

yk = y(kt),

A = exp
0 I

−M−1K −M−1C

[ ]
t

( )
,

C = L −M−1K −M−1C
[ ]

(6)

respectively and the appropriate
state noise and output noise terms
are vk and wk, respectively. The
state noise is related to the unmea-
sured external force vF , while the
output noise depends on both vF
and the measured noise e. Both
noise terms are assumed to be
stationary white noise for the theor-
etical outline of the damage detec-
tion method. While this assumption
seems to be restrictive in real-world
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applications on civil structures where
the ambient excitation may be mod-
elled by non-stationary and coloured
noise, some robustness of the
damage detection method to these
conditions has been shown,10 which
is supported by several case studies
on structures in operation.19 The
theoretical system order of the
system in Eq. (5) is the dimension
of the states n = 2m. Note that the
above modelling is not only valid
for acceleration measurements as in
Eq. (4) but generalizable to displace-
ment and velocity measurements.

The modal parameters of the model in
Eq. (3) and Eq. (4)—namely the
natural frequencies, damping ratios
and observed mode shapes—are
equivalently found in the system
matrices (A, C) of the model in Eq.
(5). Damage in the monitored system
will correspond to changes in the
matrices M, C and K in Eq. (3), for
example a loss of mass or loss of stiff-
ness, and thus affect the system
matrices (A, C) and the modal par-
ameters. Hence, damage that occurs
in the model in Eq. (3) can equivalently
be detected as changes in the modal
properties related to the system
matrices (A, C) of Eq. (5).

Based on the measurements yk of the
monitored system from a reference
and a possibly damaged state, a
residual vector is defined based on sub-
space properties without identifying
the system matrices (A, C), as outlined
in the following sections.

Subspace Properties

From the measurement data
{yk}k=1,...,N , the correlations
Ri = 1

NS
N
k=1yky

T
k−i are computed for

i = 1, . . . , p+ q, where p and q are
chosen parameters (usually
p+ 1 = q) with min (pr, qr) ≥ n.25

Then, they are filled into a block
Hankel matrix:

H =

R1 R2 · · · Rq

R2 R3 · · · Rq+1

..

. ..
. . .

. ..
.

Rp+1 Rp+2 . . . Rp+q

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠
(7)

This matrix possesses the factorization

property H = O C, with the observabil-
ity matrix:

O =
C
CA
..
.

CAp+1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (8)

and the controllability matrix C.
Matrix O can be obtained from a
singular value decomposition (SVD)
of H, truncated at the model order n,
as:

H = UDVT

= (U1 U0)
D1

D0

( )
VT ,

O = U1D
1/2
1

(9)

Note that the truncated singular
values correspond to noise and are
usually small, namely D0 ≈ 0.

Once O is obtained from Eq. (7) and
Eq. (9), the system matrices (A, C)
can be extracted from Eq. (8) for sub-
space-based system identification,26,27

from which the modal parameters can
be obtained. Instead of carrying out
this system identification step,
however, the subspace properties are
used for the definition of a damage
detection residual and a subsequent
damage detection test.

Damage Detection Residual and Test

Let H0 be a Hankel matrix (Eq. (7))
filled with data from a (healthy) refer-
ence state, and let its SVD in Eq. (9)
be given. Define its left null space
matrix S, obtained as S = U0 in Eq.
(9), such that STH0 ≈ 0.

Now, let the new measurements
{yk}k=1,...,N from an unknown state of
the system be given, from which a
new Hankel matrix H is computed. If
the data comes from the system in
the reference state then S is still a
null space of H since the modal par-
ameters and thus the matrices (A, C)
(up to a change of basis) are
unchanged. Thus, STH ≈ 0 is a charac-
teristic property of the system in the
reference state.

However, if the system is damaged, the
modal properties related to the
matrices (A, C) and thus to O in Eq.
(8) change, and the mean of the
product STH deviates from 0. Note
that the matrix H is computed from
data and does not depend on the
state basis of the matrices (A, C).

These properties lead to the definition
of the residual vector10,11,24:

z =
���
N

√
vec (STH) (10)

whereN is the number of samples from
which H is computed. This residual
vector is asymptotically Gaussian (for
a large N) with a zero mean in the
reference state and a non-zero mean
in the damaged state.10 Thus, a
change in the system corresponds to a
deviation from 0 in the mean value of
the residual vector. The corresponding
hypothesis test (for a decision between
H0: the system is in the reference state
and H1: the system is in the damaged
state) leads to the following test stat-
istic:

d = zTS−1z (11)

where S = E(zzT) is the residual
covariance matrix. An estimate of S
is the sample covariance that is com-
puted on several realizations of the
residual using measurement data in
the reference state. Due to the distri-
bution properties of the residual, the
test statistic (Eq. (11)) is asymptotically
x2 distributed with a non-centrality
parameter in the damaged state.10,11

To decide whether or not the moni-
tored structure is damaged, the test
statistic is compared to a threshold.
Based on realizations of the test stat-
istic in the reference state, the
threshold is typically defined to
reduce the probability of false alarms
(type I errors) occurring to below a
chosen level, while keeping in mind
that a lower probability of false
alarms (lower type I errors) also leads
to a lower probability of indications
of small amounts of damage (higher
type II errors) being detected. In prac-
tice, a trade-off between both needs to
be made. In the following, the event of
indication is defined as the detection of
damage, namely when the test statistic
exceeds the threshold. Note that the
terms probability of indication and
probability of detection can be used
equivalently. Thanks to the previous
properties, the test statistic (Eq. (11))
is considered as the DIV in the follow-
ing analysis.

Note that Eq. (11) is the non-parametric
versionof thedamagedetection test.11,20

A detailed description of the statistical
framework and more theoretical and
computational insight of this method
are given in Refs. [10, 11, 25].
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Updating the Structural
System Reliability with
Damage Detection
Information

The approach to update the structural
system reliability and risks is presented
at the end of this section, based on an
outline of the inspection and measure-
ment performance modelling and the
DDS performance modelling detailed
below.

Inspection and Measurement
Performance Modelling

Inspection and measurement perform-
ance can be modelled based on the
approaches of NDT, non-destructive
evaluation (NDE) and non-destructive
inspection (NDI) reliability model-
ling.28–30 In the following, methods of
NDT modelling are reviewed and a
consistent performance model is intro-
duced to provide the basis for the DDS
performance assessment.

The NDT reliability calculation is
based upon modelling or measuring
the signal given damage and the noise
(given no damage) of the NDT hard-
ware. Assume that an indication
event I is defined when the signal
exceeds a predefined threshold tD.
Depending on this threshold, the con-
ditional probabilities of the indication
event are calculated with the signal s
and the noise s0, where nD component
damage states of a structural com-
ponent are modelled as discrete and
disjoint, that is cj, j = 1, . . . , nD, and
c0 is defined as the undamaged
state. The probability of the comp-
lementary events indication (I) and
no-indication (�I) for a component
damage state cj, namely P(I|cj) and
P(�I|cj), respectively, are determined
by integrating the probability density
f of the signal:

P(�I|cj) =
∫tD
−1

f (s|cj)ds (12)

P(I|cj) =
∫1
tD

f (s|cj)ds (13)

The probability of indication and no-
indication given no damage (P(I|c0)
and P(�I|c0)) are calculated by integrat-
ing the noise s0:

P(�I|c0) =
∫tD
−1

f (s0|c0)ds0 (14)

P(I|c0) =
∫1
tD

f (s0|c0)ds0 (15)

Note that these probabilities are given
for an upper boundary threshold tD,
namely damage is indicated when the
signal exceeds this threshold, but they
can still easily be generalized to the
case of a lower boundary or two-sided
thresholds, for example. The probability
densities f of the noise and the signal
can be determined with inter-laboratory
tests performed independently several
times (so-called round robin tests)
which imply a frequentistic basis,28–30

or analytically and numerically by simu-
lating the NDT process.31,32

With the above four equations, the
probability of indication, the prob-
ability of a false alarm and the receiver
operating characteristics (ROCs) are
defined. An example of a probability
of indication (or probability of detection)
plot covering the probability of indi-
cation given no damage, c0, and differ-
ent damage states, cj, j = 1, . . . , nD, is
depicted in Fig. 1 for a constant
threshold. Please note that the
diagram contains a (non-zero) prob-
ability of indication given no damage
(c0), which is also referred to as the
probability of false alarm.

The probability of a false alarm is
defined as the probability of indication
given an undamaged structural com-
ponent P(I|c0).

33 It is understood that
the probability of a false alarm is
caused by noise, since damage is
absent by definition. Data normalizing
efforts usually aim at reducing or aver-
aging out the noise.12 The ROC is a
plot of the probability of indication,
P(I|ci), against the probability of a
false alarm, P(I|c0), for a particular
damage state ci but varying the
threshold tD.

The approach of NDT reliability mod-
elling as outlined above has recently
been applied on a component level to
modelling DDA probabilities of indi-
cation, for example with the purpose
of assessing their quality.33–35 For this
aim the signal is defined as the DIV
in the damaged state and the noise is
defined as the DIV produced by the
DDA in the reference state, that is
the state where the structural system
is undamaged. With these definitions,
the probabilities of indication and no-
indication given no damage and
damage can be calculated as per Eq.
(12), Eq. (13), Eq. (14) and Eq. (15).

Damage Detection System
Performance Modelling

In order to apply the above NDT
reliability modelling to DDS, the fol-
lowing important characteristics of the
DDS information have to be taken
into account:

1. DDS information is provided by
algorithms processing measurement
system signals.

2. The measurement system is
attached to a structural system.

3. The DDS is operated by humans.

Regarding the first characteristic, the
DIV is usually a random variable due
to the statistical signal processing of
finite measurement data. Its statistical
properties are influenced by various
factors, including data length, measure-
ment uncertainties and uncertain
environmental conditions like the
properties of ambient excitation.
Regarding the second characteristic,
the DIV for damage detection is a
value that indicates changes in the
entire structural system, meaning that
damage in each of the components
can have a different influence on the
DIV. Hence, the damage states of the
system need to be defined in conjunc-
tion with the structural components
and the structural system performance.
DDS information is also subjected to
human errors, as per the third charac-
teristic, which need to be taken into
consideration.31

These major DDS characteristics are
incorporated as follows. The structural
system is discretized into nc com-
ponents with discrete damage states.
For example, these components may
correspond to the elements of a finite-
element method (FEM) model of the
structure. Let each of the components
i [ {1, . . . , nc} have (nD + 1) possible
states, namely an undamaged state
and nD damage states. For simplicity
of notation, an equal number of nD

Fig. 1: Exemplary probability of indication
curve for one component
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damage states is assumed for each
component, which can be easily gener-
alized. The respective states are
denoted by ci,ji, where ji = 0 for the
undamaged state and ji = 1, . . . , nD
for the damage states of component i.
Then, a full discretization of the struc-
tural system states contains the poss-
ible combinations of all of these
states, amounting to (nD + 1)nc − 1
system damage states plus the unda-
maged state. Each of these states then
corresponds to a particular set of
matrices describing the monitored
system in Eq. (3), where the damage
states correspond to modifications of
the matrices M, C and K. The system
damage space Cnc is then defined by
the vectors cj = {c1,j1 , . . . , cnc ,jnc

},
where j = {j1, . . . , jnc }. Note that
c0 = {c1,0, . . . , cnc,0} denotes the
undamaged state.

Let the DIV dj be given, which is
obtained for any of these states cj,
whether the undamaged state or a
damage state, and let its probability
density function be given by f (dj|cj).
The probabilities of indication and
no-indication given a damaged struc-
tural system can then be calculated by
integrating the probability densities of
the DIV, namely:

P(�IS|cj) =
∫tS,D
−1

∫
f (dj|cj)ddj (16)

P(IS|cj) =
∫1
tS,D

f (dj|cj)ddj (17)

Note that the probability of no-indi-
cation in Eq. (16) is a type II error. In
the considered damage detection
method, the DIV is x2 distributed
(Eq. (11)). Thus, the probability
density function f corresponds to the
classical x2 distribution in the unda-
maged state, and to a non-central x2

distribution in the damaged state. An
example of the distributions of the
DIVs d0 and dj with j = 0 are given
in Fig. 2. The threshold—which is set
up from test values in the reference
state for a given type I error—is
depicted, along with the type II error

(corresponding to Eq. (16)) and the
probability of indication (correspond-
ing to Eq. (17)).

The distribution of the DIV that is
required to evaluate the probabilities
in Eq. (16) and Eq. (17) may be
obtained in two different ways. First,
it can be derived from the theoretical
properties of the DDA, the damage
state and (assumptions on the) statisti-
cal properties of the measurement
data. For the presented damage detec-
tion method, the distribution of the
DIV is known depending on a
damage parameterization.10, 36 In this
case, the damage parameters can be
obtained from an FEM model of the
structure. Second, the distribution of
the DIV may be obtained numerically
from Monte Carlo simulations, where
measurement data is simulated in the
respective damage states. This second
option is particularly useful when the
theoretical DIV distribution is
unknown or difficult to evaluate—
however, it comes with an additional
computational burden.

An example of the probability of indi-
cationcomputedwithEq. (17) isdepicted
in Fig. 3 for a system with two com-
ponents, building upon the subspace-
based DDA presented in the previous
section. It is observed that theprobability
of indication of a damage state
P(IS|{c1,j1 , c2,j2 }) with {j1 = 0, j2 = 0}
is higher than for component damage
states (P(IS|{c1,j1 , c2,j2 }) with
{j1 = 0, j2 = 0} or {j1 = 0, j2 = 0}).

Fig. 2: Scheme of probability density functions of the damage detection test statistic d in the
reference and in a damaged state

Fig. 3: Example of a probability of indication curve for a system consisting of two com-
ponents dependent on the component damage state c1,j1=1 . . .c1,j1=nD and c2,j2=1 . . .c2,j2=nD
and cS,0 = {c1,0, c2,0}
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Note that the determination of the
probability of indication for a struc-
tural system accounting for all possible
damages states may be a non-trivial
task, as the number of damage states
increases exponentially with an
increasing number of components.
One approach to circumvent this chal-
lenge is to infer the probability of indi-
cation by the properties of the DDA.36

Structural System Performance
Updating

The approach to structural reliability
updating has undergone several devel-
opments in recent decades. The early
and comprehensive work in Ref. [37]
contains a framework for structural
reliability updating that includes
inspection and monitoring information
and accounts for measurement uncer-
tainties. Recently, approaches have
emerged for modelling and updating
the system deterioration state of struc-
tures that take into account the aspect
of spatial correlation among element
deterioration.8,38–41 However, the
impact of deterioration on structural
system reliability is seldom included
in these works, and only very recent
studies can be found which integrate
deterioration into structural system
reliability.42–44 These approaches have
in common that only local information
provided by inspections for example is
utilized, that is these approaches do not
cover the characteristics of the DDS
information, namely the dependency
of the measurement system and struc-
tural system and that DDS may be
able to detect correlated component
damage states with a higher
probability.

The formulation of the structural per-
formance and the DDS performance
on a system level as presented above
facilitates the updating of the structural
system reliability. The probability of
structural system failure subjected to
the system damage Cnc(tS) given the
DDS information of no-indication,
P(FS(tS)|Cnc(tS)|�IS), can be deter-
mined utilizing Bayesian updating for
any point in time during the service
life tS as follows:

P(FS(tS)|Cnc(tS)|�IS)

= P(�IS|FS(tS)|Cnc(tS))P(FS(tS)|Cnc(tS))
P(�IS|Cnc(tS))

= P(FS(tS)|Cnc(tS)> �IS|Cnc(tS))
P(�IS|Cnc(tS))

(18)

It should be noted that the DDS infor-
mation itself refers to a point or period
in time that is neglected here for clarity.

The probability of no-indication
P(�IS|Cnc(tS)) given the system
damage state can be calculated
based on the developed approach
for the DDS performance calculation
(Eq. (17)). Following on from this,45

the marginal probability of no-
indication is calculated by integrating
the product of the conditional
probability of no-indication
(1− P(IS|Cnc)) and the joint prob-
ability density of the system damage
space fCnc (Cnc) over the damage
state spaces. The integration is per-
formed over the space V�IS, which is
defined with the limit state function
g�IS as the difference between the
probability of indication P(IS|Cnc)
and a uniformly distributed random
variable u, holding:

P(�IS) =
∫
V�IS

(1− P(IS|Cnc))fCnc (Cnc)dCnc

(19)

with

V�IS = {g�IS = P(IS|Cnc)− u}

To illustrate the characteristics of DDS
information, the risk-quantification
model is further detailed, which accounts
for the direct and indirect risks (RDDS and
RDDS

ID ) at time tS with DDS information
and yields the following:

RDDS(tS) = RD(tS)+ RDDS
ID (tS)

=
∑nc
i=1

P(Fi(tS)) · Cc

+ P(FS(tS)|�IS(tS)) · CS

(20)

Only the indirect risks are updated
due to the system characteristics of
the DDS information. In contrast,
the direct risks are updated by NDT
information, as these refer to local
indications of damage. It may be
argued that DDS information may
apply to both the structural system
and its components. However, the
updating of the component perform-
ance presupposes damage localiz-
ation, which is outside the scope of
this paper.

A risk reduction DR(tS) can be quanti-
fied by subtracting the risk given by the
DDS information and accounting for
the expected SHM costs E[CDDS(tS)]

from the total risk without DDS infor-
mation, which leads to:

DR(tS) = R(tS)− (RDDS(tS)

+ E[CDDS(tS)]) (21)

Relative risk reduction relates the risk
reduction to the total risks not utilizing
DDS information as follows:

DR(tS)
R(tS)

=R(tS)− (RDDS(tS)+E[CDDS(tS)])
R(tS)

(22)

Example: Structural Risk
Reduction with DDS Information
for a Simplistic Structural System

To illustrate the developed approach,
the effects of the structural system
and DDS characteristics on structural
reliability and risk are quantified. For
clarity, a simplistic structural system
subjected to deterioration consisting
of two components and a DDS com-
prising two sensors and a subspace-
based DDA (Fig. 4) are described,
with the system’s static, dynamic,
deterioration, reliability and conse-
quences characteristics defined as
required and outlined in the previous
sections.

The structural system properties are
modelled with distributed component
stiffness and mass subjected to a struc-
tural damping of 2% for each mode
(Table 1). The system behaviour is cal-
culated using the FEM. For each of the
structural components, nD = 100
damage states c1,j1 and c2,j2are con-
sidered, corresponding to stiffness
losses from 0 to 10%. The resulting

Fig. 4: Structural system with sensor locations
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system damage states are
cj = {c1,j1 , c2,j2 } for j1, j2 = 1, . . . , nD.

Due to the absence of redundancy, the
structural system reliability is modelled
as a series system, yielding:

P(FS)

= P
⋃nc=2

i=1

MR,iRi(tS)−MSSi ≤ 0

( )

(23)

The formulation contains the number
of components nc = 2 with the
random variables component resist-
ance Ri (dependent on the time tS)
and the system loading S, along with
their associated model uncertainties
MR,i and MS, respectively. The time-
dependent resistanceRi(tS) of the com-
ponent i is modelled with the initial
resistance Ri,0 and the time-dependent
damage Di(tS):

Ri(t) = Ri,0(1−Di(tS)) (24)

For clarity, the temporal dependence
of the damage is neglected in what
follows.

The structural reliability model is sum-
marized in Tables 2 and 3. The system
loading is represented with a Weibull
distributed random variable S, which
results by equilibrium in the com-
ponent loading Si. The loading and
resistance model uncertainties and the

resistance model are determined
according to Ref. [1] as Lognormal dis-
tributed with a standard deviation of
10%. The component probability of
failure is calibrated to 1 · 10−3 (when
not varied) by adjusting the mean of
the component resistance in the unda-
maged state based on ISO 2394
(2015)2 and the JCSS Probabilistic
Model Code.1 The correlation of the
resistances and the deterioration are
modelled with a coefficient of corre-
lation of 0.5 when not varied.

The consequence model for the calcu-
lation of risk builds upon the generic
normalized costs for component
failure Cc = 1.0, the structural system
failure CS = 100 (e.g. see Ref. [17])
and the DDS, CDDS, comprising the
DDS investment (1.33 × 10−4 per
channel), installation (1.33 × 10−4 per
channel) and operation (1.33 × 10−4

per year) in accordance with Ref. [46].

The DDS is modelled with the accel-
eration sensors s1 in the x-direction
and s2 in the y-direction, recording
the responses yk from the system laid
out in Eq. (3), Eq. 4 and Eq. (5) using
the subspace-based DDA described
previously. Based on the dynamic
structural system model, 1000 data
sets of length N = 10 000 at a sampling
frequency of 50 Hz are simulated for
each of the undamaged and damaged
states for both sensors from white
noise excitation.

The probabilities of indication P(IS|cj)
and P(IS|c0) are determined for the
considered DIV in Eq. (11) with the

threshold tD corresponding to a 0.01
probability of a type I error (see also
Fig. 2). The DDA takes into account
the uncertainties related to the
measurement data of finite length N,
which is due to the unknown ambient
excitation and the measurement
noise. Human errors in the application
and operation are accounted for by the
multiplication of the probability of
indication with a factor of 0.95.31

The probabilities of indication based
on data from sensors s1 and
s2 dependent on the system damage
state defined as axial stiffness
reduction are depicted in Fig. 5. It
is observed that the probabilities of
indication based on sensor s2 are sig-
nificantly higher, which is caused by
the higher axial stiffness of the system
in the y-direction and thus higher
absolute stiffness changes due to the
simulated damages. It is further
observed that damage of similar size
in both components can be detected
with a higher probability than
individual damage in one of the
components.

The DDS information is utilized to
update the structural system reliability
of the deteriorated structural system.
The correlation characteristics of the
deteriorated structural system may
vary significantly due to the com-
ponent, the system and the deterio-
ration characteristics (as identified
previously). The updated reliabilities
and risks are thus depicted dependent
on the resistance and deterioration cor-
relation to allow for more generality of
the example.

The deteriorated series system before
being updated by DDS information
shows a slight decrease in the structural
system failure probability for both
increasing the deterioration and the
resistance correlation rR0

and rD
(Fig. 6). When utilizing the DDS infor-
mation, the failure probability
decreases and a higher decrease rate
for the deterioration correlation is
observed for sensors s1 and s2.
However, both effects are significantly
more pronounced for sensor s2 due to
the higher probabilities of indication
(Fig. 6). The higher decrease rate for
the damage correlation in comparison
to the resistance correlation is
explained by the higher probability of
indication for correlated instances of
damage of the same size—namely the
higher the system deterioration, the
better the DDS performance.

Parameter Value

Mass per component 0.5

Stiffness of component 1: EA1 1000

Stiffness of component 2: EA2 2000

Damping ratio 2%

Table 1: Structural model properties

Random variable Distribution* Mean
Standard
deviation

Loading S WBL 3.50 0.10

Model uncertainty MS LN 1.00 0.10

Component resistance in undamaged
state R0,i

LN Calibrated 0.10

Model uncertainty MR,i LN 1.00 0.10

Damage Di N 0.07 0.03

* LN = Lognormal; N = Normal; WBL = Weibull.

Table 2: Structural reliability model

Random
variables

Coefficient of
correlation

Resistance rR0
0.5 (when not varied)

Damage rD 0.5 (when not varied)

Table 3: Correlation model
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An exponential dependency of the
structural system failure probability
on the component probability of
failure is observed (Fig. 6b). The
dependency is explained by the inter-
dependency of the component failure
and the system failure. The system
failure probability is more reduced
when using sensor s2 due to the
higher probability of indication of
structural damage.

The risk reduction DR and the relative
risk reduction DR/R according to Eq.
(21) and Eq. (22) dependent on the
damage and the resistance correlation
are shown in Fig. 7. The risk reduction
for both sensors is positive despite con-
sidering the expected SHM costs,
which means that the expected SHM

costs are overcompensated for by
the risk reduction due to the DDS
information.

It is observed that sensor s2 leads to a
significantly higher risk reduction
than sensor s1, which is caused by a
higher reduction in the probability of
system failure. The higher risk
reduction decrease rate observed for
the damage correlation is in line with
the findings in Ref. [2].

The relative risk reduction relates the
absolute risk reduction to the total
risks without utilizing the DDS infor-
mation and can thus be seen as a
measure for the significance of the
risk reduction. The risk reduction
varies between 2.3 and 6.0% for

sensor s1 and between 18.4 and
32.8% for sensor s2 (Fig. 7b). The
behaviour of the relative risk
reduction dependent on the damage
and the resistance correlation is
very similar to the risk reduction, as
the system failure probability varies
linearly and to a limited extent.

A higher absolute risk reduction is
observed for systems with a higher
probability of component and thus
system failure (Fig. 8a). This effect
has also been observed for a ductile
Daniels system with an SHM strategy
of load monitoring.44 However, the
relative risk reduction (Fig. 8b)
decreases, as the system risk increase
rate is higher than the risk reduction
rate.

Fig. 5: Probability of indication dependent on the system damage states for: (a) sensor s1; (b) sensor s2

Fig. 6: Prior and posterior system probability of failure (P(FS) and P(FS|�IS)) for different sensor positions dependent on the damage and
resistance correlation (a) and the probability of component failure (b)
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It has been demonstrated that a signifi-
cantly higher uncertainty and risk
reduction can be achieved with sensor
s2. The performance of the sensor in
the context of this study relies on
more efficiently capturing the
dynamic behaviour of the structural
system, thus facilitating higher sensi-
tivity and thus a higher probability of
detecting small damages. For a further
optimization of DDS, these character-
istics and the interrelations of the struc-
tural and DDSs have to be considered.

Utility Gain Quantification
for Damage Detection
Information

The value of the damage detection
information, namely the utility gain
by applying DDSs, can be quantified
based on the approach for the quantifi-
cation of the value of the structural

health monitoring information2 (V) as
the difference between the life-cycle
benefits B1 and B0 with and without
the DDS strategy i:

V = B1 − B0 (25)

The expected value of the life-cycle
benefit B0 is formulated as a
prior decision analysis, that is the max-
imization of the expected benefits
b0 with the kn action choices
a = [a1 . . . ak . . . akn ]

T and the ln struc-
tural performance uncertainties
Xk = [X1 . . .Xl . . .Xln ]

T :

B0 = EXk,l [b0(a
∗,0
k , Xl)]

with

a∗,0k = argmax
ak

(EXk,l [b0(ak, Xl)]) (26)

Utilizing DDS strategies si, the
expected value of the life-cycle
benefit B1 is calculated by additionally
considering the jn uncertain DDS infor-
mation Isi = [Isi,1 . . . Isi,j . . . Isi,jn ]

T with
the extensive form of a pre-posterior
decision analysis:

B1 = EZsi ,j
[E′′

Xk,l
[bi(s∗i , Isi,j, a

∗,i
k , Xl)]]

with

(s∗i , a
∗,i
k )=

argmax
si

EIsi ,j
[argmax

ak
E′′

Xl
[bi(si, Isi ,j, ak,Xl)]]

(27)

The calculation of the expected
benefits necessitates explicit benefit,
cost and risk models dependent on
DDS strategies, its outcomes, the
actions and the life-cycle performance.
These models are exemplarily

Fig. 7: Structural risk reduction dependent on the resistance and damage correlation for different sensor positions: (a) absolute risk reduction
DR; (b) relative risk reduction DR/R

Fig. 8: Structural risk reduction dependent on the component probability of failure for different sensor positions: (a) absolute risk reduction
DR; (b) relative risk reduction DR/R
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developed in the next section for a case
study with a bridge girder system that
is subjected to deterioration.

Case Study: Value of the
Damage Detection
Information for a Pratt Truss
Bridge Girder

A statically determinate Pratt truss
bridge girder (Fig. 9) is analysed. It is
assumed that the girder has been oper-
ated for five years without inspection.
A further operation until the end of
the service life TSL of fifty years is
intended. There are indications that
the bridge may undergo an abnormal
and very high deterioration. The
bridge manager knows that a DDS
will deliver more information on the
condition of the structure but does
not know at which point in time
during the service life the condition
assessment should be performed. In
order to determine an optimal point
in time, the bridge manager performs
an analysis of the value of the DDS
information.

The bridge is assumed to be in two
system states—namely in the failure
state or the safe state. Failure of the
truss is caused by component failure
due to non-redundant system charac-
teristics and will lead to the costs CF.
Component failure is caused by
extreme loads in combination with
the damage development over time.
The bridge manager has two options:
do nothing (action a0) or repair
(action a1), which will cost CR. Repair
is modelled here as full reconditioning
and it is assumed that all damaged
components are exchanged.

The probability of system failure P(FS)
can be calculated with a series system
formulation with annual (year j)
damage increments DD,i,j. The initial
resistance is reduced by the square of
the resistance reduction, which can be
shown to be proportional to a

corrosion-induced diameter and conse-
quently section loss. The section loss is
also directly proportional to the stiff-
ness loss, for which the probability of
indication is determined.

P(FS)= P
⋃nc=29

i=1

MR,iRi,0

(

× 1−
∑t

j

DD,j

( )2

−MSSi ≤ 0

⎞
⎠

(28)

The static, dynamic and structural
reliability models of the Pratt truss
bridge girder are summarized in
Tables 2 and 4. The annual deterio-
ration has been assessed and DD,i,j is
assumed to follow a Lognormal distri-
bution with a mean of 0.001 and a stan-
dard deviation of 0.001. The mean of
the resistance Ri,0 is calibrated to a
probability of 1 · 10−6, disregarding
any damage and considering that the
consequence of failure is large and
the relative cost of safety measures is
small.1,47 The probabilistic annual
extreme loading S is applied vertically
on the truss and evenly distributed on
the lower nodes 2, 3, 4, 5, 6, 7 and 8
with Si = 1/7 · S.
The cumulative probability of system
failure with time with and changes of
the damage and resistance correlation
coefficient is shown in Fig. 10. For a
constant coefficient of correlation, the
probability of system failure increases
with time due to the accumulated
deterioration damage. When varying
the coefficient of correlation from
0.1 through 0.5 to 0.9, the results indi-
cate that with an increase in the coeffi-
cient of correlation, the probability of
system failure decreases.

The DDS is modelled with acceleration
sensors located at nodes 12, 13 and 14
of the truss in the vertical direction to
record the response using the sub-
space-based DDA (Fig. 11). The

probabilities of indication and the
probability of truss system failure
given the DDS information of no-indi-
cation are calculated following the
method laid out previously. The indi-
vidual probabilities and an exemplary
joint probability of indication are
shown in Fig. 12. A DDS employment
causes costs of CDDS and may cause
also damage localization costs Cloc in
case damage is indicated.

In Fig. 13, the effect of updating the
structural system reliability is shown
for one DDS utilization (see Eq. (18))
for the different considered damage
failure correlations and for different
DDS employment years.

The decision analysis for the quantifi-
cation of the value of the DDS infor-
mation V is presented in Fig. 14,
based on the formulation laid out
earlier in the paper. The analysis

Fig. 9: Decision tree for assessing the value of DDS information (where the rectangles are decision nodes and the circles are chance nodes)

Parameter Value

Mass per component 0.02

Young’s modulus E 14400

Cross-section A 10/144

Length of non-diagonal element 10

Length of diagonal element 10
��
2

√

Damping ratio 2%

Table 4: Structural model properties

Fig. 10: Probability of system failure over time
with varied values of rR0,i

= rD = 0.1, 0.5, 0.9

264 Scientific Paper Structural Engineering International Nr. 3/2018



encompasses the basic decision of
whether or not to employ a DDS for
condition assessment, the DSS strat-
egies, their outcomes, the actions and
the system service life performance,
as well as the associated consequences
for each branch of the decision tree.

The cost model based onRefs. [48, 49] is
shown in Table 5. All costs are dis-
counted with a discount rate of 0.02.
During the service life of the bridge, a
target system failure probability of
1 · 10−4 is required, as the costs for
safety measures are high and the

consequences remain high.1, 47 The
cost of repair CR increases with time
due to the damage accumulation and
is modelled dependent on the invest-
ment cost CI and the service life TSL

(Eq. (29)). When the bridge is repaired,
it is assumed that all damaged

Fig. 12: Probabilities of: (a) indication dependent on the stiffness loss in 29 components; (b) joint probability of indication for components 1
and 2

Fig. 13: Posterior probability of system failure: (a) for P(FS|�IS)with varied values of rR0,i
= rDD,i

= 0.1, 0.5, 0.9 if implementing DDS at year
10; (b) during service life when rR0,i

= rDD,i
= 0.5 if implementing DDS at year 10, 20, 30 or 40

Fig. 11: Pratt truss bridge girder with a distributed load (arrows) and the sensor locations (double arrows)
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components are exchanged with new
components:

CR = CI

TSL + 2− t
(29)

The failure cost CF is assumed to be
higher than the investment costs by a

factor of 100 due to indirect conse-
quences. The localization cost Cloc and
DDS application cost CDDS are
assumed equal to 0.1, following for
example Ref. [48].

Figure 15 shows the expected costs and
risks and the value of the DDS infor-
mation dependent on the DDS

employment year tDDS. The value of the
DDS information is positive between
years 7 and 11. The maximum is at year
7, with a significant relative value of the
DDS information of 11%. The value of
the DDS information is very low in year
6, at which point the DDS information
does not influence the repair actions.
Only DDS employment in year 7 will
lead to changes in the repair actions and
hence a reduction in the expected
repair costs. The value of the DDS infor-
mation decreases in the consecutive
years, as the period for which the DDS
information provides a risk reduction
becomes shorter. A drop in the value of

Fig. 14: Decision tree combining a prior decision analysis (branch with no DDS) and a pre-posterior decision analysis to calculated the
optimal expected life-cycle benefit B∗ for one point in time.

Variable
Discount
rate r

Investment cost
CI

Failure cost
CF

Localization cost
Cloc

DDS cost
CDDS

Value 0.02 10 1000 0.1 0.1

Table 5: Parameters in the cost and benefit analysis

Fig. 15: (a) Expected costs and risks; (b) value of DDS information dependent on the DDS employment year tDDS for rR0,i
= rDD,i

= 0.9
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the DDS information occurs in year 13,
as here the optimal action also becomes
repair for the branch without the DDS
information, as enforced by the target
reliability of 10−4.

Conclusions

The introduced approach facilitates the
updating of the structural reliability
and risks with DDS information at
the system level for both the DDS
and the structural system. The DDS
performance modelling accounts for
the characteristics and dependencies
of the structural system states and
encompasses the measurement system
(number of sensors, sensor positions,
precision of the system incorporating
human errors) and the employed
DDAs. The structural system damage
states necessitate consistent modelling
in terms of the static, dynamic and
deterioration characteristics in order
to derive the structural reliability and
risk, as well as the DDS performance
models.

The introduced DDS performance
modelling facilitates the comparison
and assessment of various DDSs on
the basis of the probabilistic indication
characteristics at the DDS and struc-
tural system levels with for example
the system- and/or component-wise
and structural system specific prob-
ability of indication. The calculation
of the DDS performance may
demand high experimental or compu-
tational resources, as the system
damage state space increases exponen-
tially with the number of components.
Several strategies to overcome this
challenge have been discussed and
outlined.

The quantification of the value of the
DDS information may serve as a basis
for DDS design. In this perspective, a
DDS (i.e. the number of sensors, the
sensor positions, the precision, the
DDA) can be optimized to achieve a
maximum expected life-cycle benefit
for a specific structural system or class
of structural systems.

With two case studies, the potential of
the approach has been demonstrated
in terms of the significant value of the
DDS information and the reduction
of the structural system risk by utilizing
a subspace-based DDA. The approach
is generalizable to other DDAs, requir-
ing the indication characteristics for a

discretization of the system damage
state space for a chosen DDA.
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