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SUMMARY 

At present, many infrastructures in the most developed countries will soon be at or 

may have already reached the end of their design service life. Infrastructure owners 

and operators are facing the severe challenges of operation and maintenance as well 

as service life extension towards those structures. Structural Health Monitoring 

(SHM), as a method of identifying and characterizing infrastructure damage, can be 

very effective in delivering structural safety knowledge to owners and operators. 

However, there is a gap to transfer the SHM information into the integrity 

management decision processes. Owners and operators may be hesitant to apply SHM 

because they have no comprehensive method to consistently answer these questions: 

• What is the value of SHM? 

• How to choose the proper SHM technique? 

• How to design the SHM system, e.g., sensor location and numbers? 

• How to use SHM information for maintenance planning and service-life 

extension? 

• When should the monitoring be done and when should the maintenance be 

done? 

• How long should the structure system be monitored and how often is 

maintenance necessary? 

In the past, owners and operators solved these decision problems mainly based on 

either experience and/or their budget. This thesis develops a new framework for 

minimizing the expected structural integrity costs and operational risks by finding 

optimal employment scenarios to solve decision problems quantitatively, which is 

namely the quantification of the value of monitoring information for deteriorated 

structures. The new framework provides forefront of the in-depth development of 

value of information theory approaches in civil and structural engineering, which 

integrates the Bayesian decision analysis with SHM through detection theory, 

structural performance and utility modelling considering probabilistic analysis, cost, 

and benefit analysis as well as consequences analysis.  

This framework provides a comprehensive basis to facilitate answering the above 

questions through comprising (1) a novel generic pre-posterior decision theoretical 

framework of implementing a damage detection system, (2) a comprehensive utility-

based and information value-based optimization of lifecycle structural integrity 

management, (3) various probabilistic modelling approaches for the utilization of 

SHM data into knowledge related to decision-making and (4) a general parametric 

analysis of structural and damage detection system influencing parameters, the 

decision rules as well as the cost and benefit model parameters on the value of 

information. The innovation of the thesis is on the value of information determination 

on system level for both a structural health monitoring system and an engineering 

system. 
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With aim to develop monitoring strategies to plan the structural integrity management 

most efficiently throughout and prolonging the service life for deteriorated structures, 

the thesis starts with introducing an extended methodological summary in the SHM 

process and application, value of information modelling, decision analysis, Bayesian 

updating, detection theory, structural performance, reliability computation and 

lifecycle utility modelling.  

Then the proposed approaches are applied into several case studies on system 

configurations of structural and building information systems for the efficient risk and 

integrity management of bridges and wind turbines, such as the design of a damage 

detection system on a Truss bridge girder regarding the sensor location, sensor 

numbers and monitoring year, whether or not to replace a 60-year-old Crêt de 

l’Anneau Viaduct in Switzerland, the implementation of short-term or long-term 

monitoring on the service life extension of the welds on the Great Belt bridge in 

Denmark, whether or not to install an ice heating system on an onshore wind turbine 

near a highway in the icing condition and the comparison of SCADA and strain gauges 

monitoring information on an offshore wind turbine. 

With the proposed approaches and applied case studies, this thesis has shown that 

value of information-based pre-posterior decision analysis is an effective method for 

offering a concrete decision framework for optimal structural and building 

information system employment in industrial applications by risk reduction, expected 

cost saving and service life benefits for the value of industry and society.  

  



VII 

RESUMÉ 

Mange infrastrukturanlæg i de mest udviklede lande vil snart være ved eller har måske 

allerede nået slutningen af deres designlevetid. Infrastrukturejere og operatører står 

over for store udfordringer mht. drift og vedligeholdelse samt forlængelse af levetiden 

for disse konstruktioner. Structural Health Monitoring (SHM), der er en metode til at 

identificere og karakterisere infrastrukturskader, kan være meget effektiv til at levere 

information on strukturel sikkerhed til ejere og operatører. Der er dog et problem mht. 

at overføre SHM-informationen til beslutningsprocesserne for styring af integritet. 

Ejere og operatører kan være tøvende med at anvende SHM, fordi de ikke har nogen 

sammenfattende metode til konsistent at besvare følgende spørgsmål: 

• Hvad er værdien af SHM? 

• Hvordan vælger man den rigtige SHM-teknik? 

• Hvordan designer man SHM-systemet, f.eks. sensorplacering og -antal? 

• Hvordan bruges SHM-oplysninger til vedligeholdelsesplanlægning og 

forlængelse af levetiden? 

• Hvornår skal overvågningen udføres, og hvornår skal vedligeholdelse 

udføres? 

• Hvor længe skal struktursystemet overvåges, og hvor ofte er vedligeholdelse 

nødvendig? 

Tidligere løste ejere og operatører disse beslutningsproblemer hovedsageligt baseret 

på enten erfaring og / eller deres budget. Denne afhandling udvikler en ny ramme til 

minimering af de forventede strukturelle integritetsomkostninger og operationelle 

risici ved at finde optimale scenarier til at løse beslutningsproblemerne kvantitativt, 

hvilket omfatter kvantificering af værdien af information fra overvågning for 

konstruktioner, der nedbrydes over tid. Den nye ramme giver basis for den 

grundlæggende udvikling af metoder til vurdering af værdien af information for 

konstruktioner inden for byggeri og anlæg, som integrerer Bayesiansk 

beslutningsanalyse med SHM gennem detektionsteori, strukturel ydeevne og 

brugsmodellering ved at anvende probabilistisk analyse, kost-benefit analyse samt 

konsekvensanalyse. 

Denne ramme giver et godt grundlag til at besvare ovennævnte spørgsmål ved at 

benytte (1) en generisk pre-posterior beslutningsteoretisk ramme til implementering 

af et skadesregistreringssystem, (2) en omfattende brugsbaseret og 

informationsværdibaseret optimering af livscyklusbaseret integritetsstyring, (3) 

forskellige probabilistiske modelleringsmetoder til anvendelse af SHM-data til viden 

der kan benyttes til beslutningstagning og (4) en generel parametrisk analyse af et 

struktur- og skadesøgningssystem, og af de parametre der påvirker beslutningsregler 

og omkostninger og rangerer modelparametre på værdien af information. 

Afhandlingens innovation knytter sig til bestemmelse af værdien af information på 
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systemniveau for både et strukturelt skades overvågningssystem og for et strukturel 

system. 

Med det formål at udvikle overvågningsstrategier til at planlægge den strukturelle 

integritetsstyring mest effektivt og forlænge levetiden for skadede konstruktioner, 

starter afhandlingen med at introducere en række metodologiske reviews og basis for 

SHM-processen og dens anvendelse, værdien af informationsmodellering, beslutning 

analyse, Bayesian opdatering, detektions teori, strukturel ydeevne, pålideligheds 

beregning og livscyklus benefitcost- modellering. 

Derefter anvendes de foreslåede metoder i flere case-studier med 

systemkonfigurationer indenfor  bygge- og anlægs informationssystemer til effektiv 

risiko- og integritetsstyring af broer og vindmøller, såsom design af et 

skadesdetekteringssystem på en bro med hensyn til sensor placering, sensorantal og 

overvågnings tidspunkter, uanset om de skal anvendes på en 60-årig Crêt de l'Anneau 

Viaduct i Schweiz, implementering af kortvarig eller langvarig overvågning af 

levetiden af svejsningerne på Storebæltsbroen i Danmark, og om der skal installeres 

et isvarmesystem på en vindmølle på land nær en motorvej under isdannelse og 

sammenligning af SCADA og strain gauge målinger, der indsamler oplysninger om 

en offshore vindmølle. 

Med de foreslåede metoder og anvendte casestudier har denne afhandling vist, at 

værdien af informationsbaseret pre-posterior beslutningsanalyse er en effektiv metode 

til en konkret beslutningsramme for optimal struktur- og bygningsinformations 

system anvendelse i industrielle applikationer til risikoreduktion, reduktion af 

omkostninger og levetidsforlængelse og derved skabe værdi for både industri og 

samfundet. 
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“The fundamentals for structure integrity management like bridges can be learned 

from looking at teeth care.” 
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CHAPTER 1. INTRODUCTION 

All the structures deteriorate over time due to ageing of materials (e.g., concrete and 

steel), fatigue, corrosion, overloading, exposure to aggressive conditions etc. [1]. A 

significant number of worldwide deteriorated infrastructures are nearing the end of 

their designed service life. 

In Europe, a substantial set of infrastructures is constructed after the Second World 

War in the 50s and 60s of the last centuries such as bridges with a common design 

lifetime of 50-100 years [2]. Some of such infrastructures are near to the end of 

designed life, or even beyond.  

In the US more than 39% of the bridges have exceeded their 50 years of design life, 

and an additional 15% are between the ages of 40 and 49 according to the Federal 

Highway Administration (FHWA) [3]. The average age of bridge in the US is 43 years 

old [4]. Therefore, a growing number of bridges would have to be rehabilitated or 

replaced in the immediate future.  

1.1. MOTIVATION 

1.1.1. DRIVER OF SHM  

It is essential that owners and operators have ideas on how severe the deterioration is 

and what effect on remaining service life, as failure of the structures may result in loss 

of lives and incur high costs. For example, the collapse of Miranda bridge in Genoa 

Italy 2018, which caused the death of 43 people and left 600 homeless after 50 years 

of usage [5].  

Furthermore, due to design, poor construction, and other external factors such as the 

growing number of populations, number of cars, climate change and more often 

natural and manmade hazards, more infrastructure recently has shown a faster 

deterioration process than expected [6]. 

Therefore, proper actions needed to be made towards the sustainability, functionality, 

and reliability of the structures. Necessary maintenance and appropriate inspection 

methods are needed to maintain the safety of the deteriorated structures. Moreover, 

more and more stringent regulations have been released to support regular 

maintenance of public infrastructure, engineering structure as well as heritage 

structures world-widely, e.g., European Standard [7, 8], International Organization for 

Standardization [9-11], Germany [12], Canada [13], China [14], etc. 
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There are typically two strategies of maintenance for machinery systems where a 

failure can be corrected, which are corrective maintenance (repair after failure) and 

preventive maintenance (repair/maintenance before failure). For structures1, it often 

uses preventive maintenance as to avoid catastrophic failures of the structures. To 

achieve preventive maintenance, operators can implement periodic scheduled 

maintenance or condition-based maintenance.  

Periodic scheduled maintenance is based on experience. In terms of structure systems, 

there are two major disadvantages [15] related to an experience-driven approach, 

namely that (is) there are no applicable experiences to be drawn on for new structures 

and that (ii) new monitoring technologies may be applied prior to deployment with no 

referenced experience. This demands a comprehensive framework and coherent 

theoretical approaches beyond expertise to devise both the analysis and the 

enhancement of maintenance strategies. 

Condition-based maintenance is more ‘intelligent’ compared to periodic scheduled 

maintenance, as the maintenance decisions are made using the present information on 

the actual health of the component, which can be accessed through Structural Health 

Monitoring (SHM).  

SHM is a term composed of a large variety of methods, which are implemented to 

collect information for the evaluation of the structural performance during their 

service life. SHM applications are intended to provide managers with detail on the 

integrity (and forecasting of integrity) of a structure, as e.g., discussed in [16] and 

[17]. The general purpose is to monitor the performance of structures by applying 

diverse sensing technologies and data analysis algorithms [18] to utilize all relevant 

knowledge to model and to document the structure’s health and damage detection, 

aiming at ensuring an appropriate level of safety for users, maintaining the 

environment sustainability, and reducing life-cycle costs for the asset.  

Implementing SHM can bring superior benefits [19] like (a) code and standard 

calibration-decision support in the design phase, (ii) structure prototype creation and 

validation by testing in the design phase and (iii) utility management during the 

operational phase of an infrastructure system, e.g., integrity management preparation, 

service life extension, utilization adjustment, performance improvement, damage 

detection and early damage notification for risk mitigation measure. However 

improper SHM implementation may also result in big losses if the information is not 

relevant and causes a lot of data processing efforts. 

 
1 In the Eurocodes EN1990, preventive maintenance is not included as a non-structural mean 

for buildings since it cannot be assured that the maintenance is actually performed. 
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1.1.2. CHALLENGES OF SHM  

Due to the need to avoid catastrophic failure of deteriorated structures and achieve 

sustainability of structures, the field of SHM research has been boosted. To reduce the 

uncertainties in structural behavior, SHM strategies and measurement methods have 

been intensively studied.  

However, only few SHM studies were undertaken considering the economic issues 

[18]. It is not clear that any private sector or government agency would be willing to 

invest on a SHM system if it is not shown that this SHM technology will have a more 

quantifiable, enhanced safety level and economic advantage compared to the existing 

employed maintenance strategy.  

Common practice in SHM research starts with measurement, then feature extraction, 

and finally deviation of the damage index [18], mostly without a quantifiable 

consideration of the further maintenance decision processes, so that the relevance and 

value of the SHM information may not be clear. There is need to transform data from 

SHM into information that contributes to integrity management decision processes. 

For owners and operators of infrastructure it is often unclear whether it is worth 

undertaking an SHM project that takes into consideration the risk and economical 

aspect. The consequence of inadequate SHM strategies may be needless or improper 

remedial practices resulting in financial losses and wasted workforce due to 

unnecessary disruption to infrastructure network users or structures safety 

jeopardizing.  

If the profit is not explicitly defined, the decision makers are hard to be persuaded to 

invest in SHM for complex systems. The benefits of SHM are mostly not clear up 

front, decision makers may prefer to incorporate practice experience to evaluate 

appropriate performance monitoring strategies. They may not account how to utilize 

the gathered information to contribute to optimizing lifecycle structural integrity 

management.  

Therefore, the value of SHM needs to be more thoroughly understood before its 

deployment. It is important to establish a technically realistic framework to quantify 

the value of monitoring information. This would be of greatest importance regarding 

the problem of evaluating the value of SHM pre-posteriorly before implementing the 

monitoring strategy. 

Another challenge is that it may be difficult to guarantee that the SHM is performed 

during the whole lifetime and that the associated decision rules are followed 

throughout the management of the structure. So, it cannot be assured that an 

acceptable level of structural reliability is obtained. 
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1.2. VALUE OF SHM INFORMATION 

To quantify the value of SHM information, the Value of information (VoIP) theory 

can be utilized. It originates from the Bayesian decision analysis, which is firstly 

presented from Raiffa and Schlaifer [20] and Howard [21] with regards to business 

decisions. VoI analysis has been used in many technological and research fields, 

including oil and gas industry [22-24], earth science [25], environmental health risk 

management [26], nuclear waste storage assessment [27], but only few results are 

accessible on how to quantify and assess the value of SHM before its implementation 

regarding the structural lifecycle management. 

1.2.1. STATE OF ART 

Among the domain of quantifying the value of SHM information, Pozzi et.al. [28] and 

Thöns [29] did the early research in 2011. Pozzi established the methodology for 

evaluating the VoI as relevant to the rating of efficient long-term structural health 

monitoring systems on civil structures. The issue of non-linearity of the cost-to-utility 

mapping is discussed and the time-consuming predictive models are solved and 

estimated by a Monte Carlo approach. It concludes that if the expected expense of the 

experiment is below the VoI calculated prior to implementation, the experiment 

should then be performed. 

Thöns extracted the posterior measurement uncertainty from Bayesian updating the 

statistical observations’ uncertainty and the model uncertainty in his PhD thesis in 

2011, which enables the measurement uncertainty quantification using all accessible 

measurement process data. Consecutively, an early approach for quantifying and 

optimising the service life cumulated expected of costs and risks has been introduced 

and applied to an offshore wind turbine. It has been seen that through utilisation and 

optimisation of local monitoring information in conjunction with comprehensive 

numerical mechanical models of the wind turbine fatigue, ultimate and serviceability 

limit states, the total risks and expected costs can be significantly reduced. 

A more comprehensive description of the approach was presented in Thöns et al. [30] 

and Faber et al. [31] regarding the application of the value of information theory in 

the field of SHM. An expanded definition of decision analyses can be found in Thöns 

et al. [32], which offers an extended framework for determining the value of decisions 

namely the VoI, the value of actions and the value of actions and information. 

Inspired by Pozzi, Zonta et al. [33] presented a framework for evaluating the impact 

of SHM on decision, which drawed on the principle of VoI and is illustrated on the 

Streicker Bridge case study. The methodology is focused on the hypothesis that the 

bridge manager must respond if the expected loss for taking no action is greater than 

the cost for acting, not unless the monitoring system suggests that the bridge is more 

probable to be damaged rather than being intact. Generalized models are built utilizing 
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different damage scenarios and corresponding remedial actions. The case study is an 

example of how the monetary gain of an SHM system for certain observable events 

can be measured. 

Based on the same case study from Zonta, Bolognani et al. [34] differentiated how the 

value of information can be varied by the different opinions of decision maker, e.g., 

the manager and the owner. It suggests that if manager and owner are separate persons, 

the benefit of monitoring is not equal compared to the case of a single decision maker.  

Straub [35] also provided a method for modelling and estimating VoI with structural 

reliability methods based on importance sampling, which is applicable to fatigue 

monitoring. The difficulties in practical application of VoI are addressed, which 

includes how to set up a reasonable probabilistic modelling of the monitored process, 

how to model the action alternatives according to the monitoring results, and how to 

minimize computational efforts to determine the VoI. It is concluded that the VoI 

analysis is an effective method for offering valuable insights even when complicated 

decisions are needed to be made with significant uncertainty. 

Konakli et al. [36] described an approach of VoI analysis in structural safety given 

inspections or structural health monitoring based on pre-posterior Bayesian theory, 

aiming to optimize different possible experimental schemes. An analysis is carried out 

on how the VoI is influenced by different factors, such as structural properties 

uncertainty, the inspection numbers, monitoring details and the component 

interdependencies. It concludes that the computational demand is the main limitation 

of VoI analysis. 

Thöns et al. [37] introduced a continuous resistance deterioration model to calculate 

the value of SHM for fatigue deteriorating structural steel Daniel systems. The 

findings point to the significance of considering the structural system risks in 

quantifying the value of SHM. 

Qin et al. [38] quantified the value of SHM in terms of lifecycle integrity management. 

A lifecycle cost analysis with generic structural performance model combining the 

observation of deterioration increments has been developed. The value of SHM is 

computed as the variation between the expected lifecycle structural integrity 

management costs with and without considering an optimal SHM system. 

Due to the European project of COST Action TU1402: “Quantifying the Value of 

Structural Health Monitoring” from 2014 to 2019 (https://www.cost-tu1402.eu/), 

more and more researchers, scholars, experts, and engineers from other sectors 

participate in this research field and have contributed recently. Developments of the 

COST Action TU1402 can be found in [39]. 

https://www.cost-tu1402.eu/


 

8 

Stepinac et al. [40, 41] explained how pre-posterior decision analysis can aid to 

quantify the VoI acquired by the condition evaluation of timber structures and further 

lead to choose suitable evaluation procedures and corresponding maintenance 

activities, which is investigated based on a timber exhibition hall in Zagreb, Croatia. 

Sykora et al. [42] [43] optimized in-site testing for historic masonry structures in 

Czechia through assessing the value of non-destructive and destructive techniques.  

Honfi et al. [44] and Leander et al. [45, 46] provided potential evaluation criteria and 

a basis for decision on actions to prolong the designed service life of Söderström 

bridge in Sweden subjected to fatigue deterioration. Skokandić et al. [47, 48] and 

Mandić-Ivanković et al. [49] addressed decisions on bridge maintenance techniques 

and value of Bridge Weight-in-Motion data while analyzing road bridges in Croatia. 

Limongelli et al. [50] adopted a methodology focused on the VoI definition and 

applies it to a two-span reinforced concrete bridge case study in Italy to quantify the 

value of visual inspections for bridges emergency management under seismic hazards. 

Sousa et al. [51, 52] developed a constructive SHM method devoted to early damage 

identification on bridges from Portugal through the usages of VoI, which supports the 

infrastructure designer and operation managers to better (re)negotiate for the contract 

regards to civil structures assets management. 

Thöns and Stewart [53, 54] utilized a decision theoretical process based on VoI theory 

to evaluate the cost-effectiveness of risk reduction measures for a historical bridge in 

case of terrorist attacks. 

Mendoza et al. [55] suggested a decision process to identify an optimum design for a 

Norwegian offshore wind farm foundation with emphasis on identifying the expected 

consequences of failure utilizing risk indicators and discuss the value of obtaining 

site-specific soil characteristics data via a VoI study.  

Thöns et al. [56] quantified the value of several SHM strategies for service life 

extension of a wind park. Nielsen et al. [57] quantify the value of SHM for blades of 

offshore wind turbines and evaluate three sensor configurations. 

Maślak et al. [58] performed a case study on the maintenance of a tendon supported 

large span roof from Poland. In the study from Diamantidis et al. [59, 60], the 

enhancement of monitoring and decision requirements for the future use of structures 

is shown using the stadium roof located in northern Italy as an example. 

Malings et al. [61, 62] explored optimum data acquisition in space and time for system 

integration and developed methodologies for effective VoI computation to optimize 

online and offline placement and scheduling of sensors. Li et al. [63] studied the 

connection between the VoI and measure accuracy and availability of measurements, 
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degradation rates, predictability of damage, response time, maintenance expenses, and 

the financial discount rate. 

The TU1402 Guide for scientists [19] represents a collection of models for structural 

health information (SHI) encompassing local (inspections) and global damage 

detection, monitoring, Nondestructive testing and evaluation (NDE, NDT) and load 

testing information. It is observed that the guideline excludes the Markov Decision 

Processes. It provides a consistent and comprehensive formulation of the value of SHI 

quantification encompassing the probabilistic modeling of SHI and a classification of 

SHI strategies.  

1.2.2. SUMMARY 

The quantification of the value of SHM information has been intensively under 

research in the aforementioned three areas throughout the past 10 years by: 

1. Development of a theoretical framework on assessing and recompiling the 

mathematical framework of VoI analysis on the structural integrity 

management. The contribution references can be found in [30-32, 35, 36, 

64]. 

 

2. Application of VoI on the selection of suitable SHM strategies and on the 

choice of life-cycle integrity management. The relevant illustrative examples 

for civil infrastructures include bridges [45, 50, 52, 53, 65], offshore wind 

turbine structures [55, 57, 66], dam structures [67], buildings [40, 41, 43] and 

roofs [59, 60]. 

 

3. Development of guidelines on the use of available methods and tools for the 

computation of the VoI, which can be found in TU1402 website2 with the 

factsheet on tools. A complete VoI analysis tool called VoICalc [68] is 

currently in development. Existing decision and policy planning tools that 

may be used in a VoI study [40] are GeNiE3, QGeNIe4 Modeler based on 

 
2 https://www.cost-tu1402.eu/action/working-groups/methods-and-tools.  

3 GeNIe is a graphical user interface (GUI) from BAYES FUSION, which allows for immersive 

model building and learning.  

4 QGeNIe, from BAYES FUSION, is a rapid model development interface that allows for fast 

prototyping of decision models, useful especially in applications such as strategic planning. 

https://www.cost-tu1402.eu/action/working-groups/methods-and-tools
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Bayesian networks, Netica5 based on Bayes nets, KUBA6 based on Markov 

Decision processes, Perseus POMDP7 based on Partially Observable Markov 

Decision Processes (POMDPs), and Precision Tree8 based on the decision 

trees. 

 

  

 
5 Netica, from NORSYS Software Corp, works with influence diagrams to fidentify optimal 

decisions which maximize the expected values of specified variables.  

6 KUBA, from Infrastructure Management Consultants GmbH (IMC), facilitates management 

of engineering structures such as bridges, galleries, retaining walls and tunnels. 

7 Perseus POMDP, from Matthijs Spaan, TU DELFT, Frans Oliehoek. The toolbox is a free 

C++ software toolbox for decision theoretic planning and learning in multiagent systems 

(MASs). This addresses a limitless horizon decision making issues. 

8 PrecisionTree, from Palisade, visually maps out, organizes, and analyzes decisions using 

decision trees, in Microsoft Excel.  
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1.3. AIM OF THE THESIS 

This PhD research was started two years after the launch of the European project of 

COST Action TU1402: “Quantifying the Value of Structural Health Monitoring” 

from end of 2016, which also contributes and is in alignment with the aim of COST 

Action TU1402. This PhD program was performed within the INFRASTAR 

(Innovation and Networking for Fatigue and Reliability Analysis of Structures - 

Training for Assessment of Risk) network (https://infrastar.eu/) with the goal of 

structure service lifetime extension, overall cost and risk reduction and development 

of value of information-based lifecycle approaches for future SHM designs.  

The latest work accomplishments, focused on the pre-posterior Bayesian decision 

analysis, have provided a systematic and straightforward theoretical basis to quantify 

the value of SHM prior to its deployment and showed that the value of a SHM strategy 

can be quantified even before it is implemented. Furthermore, recent studies show a 

large industrial potential for substantially increased life cycle benefits utilizing a pre-

designed and optimised SHM strategy. This PhD focusses on structures exposed to 

deterioration such as bridges and wind turbines aiming at: 

• Further development of formulations, applications and extensions of 

approaches and methods for quantifying value of monitoring information 

based on utility theory, Bayesian decision theory, probabilistic approaches, 

risk, and reliability analysis as well as cost and benefit models. 

 

• Development of a generic methodology of structural integrity management 

based on value of information theory with combination of structural 

performance by utilizing the monitoring data. 

 

• Development of methods for coupling SHM information with structural 

reliability models during the lifecycle of the structure system. 

 

• Establishment of cost-efficient and reliable operation and maintenance plans 

based on Bayesian statistics and optimization of maintenance scenarios. 

 

• Identification of optimal monitoring strategies to efficiently manage and to 

prolong the service life of deteriorated structures. 

 

• Establishment of intelligent sensor deployment and SHM design by studying 

the influence of the structural and damage detection model as well as cost 

and benefit model parameters on the value of information. 

 

• Application of the theoretical basis on case studies for reliability analysis and 

value of information-based optimal life-cycle decision analysis. 

 

https://infrastar.eu/
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• Improvement of knowledge and decision basis for optimizing the design of 

SHM systems and utilization of monitoring data for more reliable structural 

safety verification and more precise fatigue life prediction of the existing 

structures.  

 

• Achievement of sustainable societal development through maintaining 

reliability, safety, serviceability, and productivity in the asset management 

of structures and infrastructures. 

 

1.4. THESIS OUTLINE 

To systematically achieve this aim, the thesis includes the extended methodological 

summary (Chapter 2) as well as the research issues (Chapter 3 to 7) and summary, 

conclusion, and outlook (Chapter 8), as shown in Figure 1.  

 

Figure 1 Outline of the thesis 
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This Ph.D. thesis is a paper-based thesis, consisting of an extended methodological 

summary (Chapter 1 and 2) and five published papers (Chapter 3 to 7). Chapter 1 is 

the Introduction, describing the motivation, aims, state of the art and thesis outline. 

Chapter 2 is the summary of methodological knowledge (shown in Figure 2) that is 

related to the quantification of the value of monitoring information for deteriorated 

structures. It also contains a short description of the results in the papers and how the 

papers are contributing to fulfilling the objectives of the work. Chapter 3 to 7 (Paper 

1 to 5) are the collection of five papers as follows, in which three of them (Paper 1 to 

3) are applied research case studies on bridges, the remaining two (Paper 4 and 5) are 

case studies on wind turbines. The summary of the papers is shown in Table 1. 

Paper 1 Long L., Döhler M., Thöns S. Determination of structural and damage 

detection system influencing parameters on the value of information. Structural Health 

Monitoring Journal (2020), https://doi.org/10.1177/1475921719900918 

Paper 2 Long L., Alcover F. I., Thöns S. Utility analysis for SHM durations and 

service life extension of welds on steel bridge deck. Structure and Infrastructure 

Engineering (2021), DOI: 10.1080/15732479.2020.1866026 

Paper 3 Bayane I., Long L., Thöns S., Brühwiler E. Quantification of the value of 

SHM data for the fatigue safety evaluation of a road viaduct. ICASP13-13th 

International Conference on Applications of Statistics and Probability in Civil 

Engineering. May 26-30, 2019, Seoul, South Korea. 

Paper 4 Long L., Mai A. Quang., Morato G. P., Sørensen D. J., Thöns S. Information 

value-based optimization of structural and environmental monitoring for offshore 

wind turbines support structures. Renewable Energy. 2020 Jun 12. 

https://doi.org/10.1016/j.renene.2020.06.038  

Paper 5 Rastayesh S., Long L., Sørensen D. J., Thöns S. Risk Assessment and Value 

of Action Analysis for Icing Conditions of Wind Turbines Close to Highways. Energies 

Journal, Volume 12, Issue 14, 2019. 

Table 1 Summary of papers 

Paper Object SHM 

information 

Decision scenario 

1 Theoretical 

truss bridge 

girder 

 

Damage 

Detection 

System 

(DDS) 

-Whether to implement DDS? 

-How are sensors placed? 

-How many sensors to install? 

-In which year to implement DDS? 

-How to choose the proper sensors? 

-How will the structural deterioration 

state influence the choice? 

https://doi.org/10.1177/1475921719900918
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2 Great Belt 

bridge in 

Denmark  

 

-Strain 

gauges 

-Pavement 

temperature 

-Traffic 

-What is the optimal monitoring 

campaign regarding the monitoring 

duration and phase? 

-Service life extension of the 

monitored welds or not? 

3 Crêt de 

l’Anneau 

Viaduct in 

Switzerland

 

-Strain 

gauges  

-

Thermocoup

les  

-Whether to replace the viaduct after 

60 years of usage? 

4 Offshore wind 

turbine 

 

-Strain 

gauges 

-SCADA 

data  

-What is the optimal monitoring 

strategy?  

5 Onshore wind 

turbine  

 

-Ice 

detecting 

system 

 

-Implementation of the ice heating 

system or not, given that ice detecting 

system is already installed? 

 

Paper 1 is the core contribution of the thesis with a very comprehensive description, 

computation, and discussion of the pre-posterior decision on determination of all 

aspects of Damage Detection System (DDS) design on a truss bridge girder before its 

implementation. This offers complete answers to the following questions: Whether to 

implement DDS? Where to place the sensors? How many sensors are needed? In 

which year to deploy DDS? How to pick the proper sensors? How will the structural 

deterioration condition (deterioration type, rate and initialing year) impact the choice? 
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Paper 2 and 3 discuss the scenario when the SHM system is already applied, how to 

utilize the SHM data obtained to facilitate decision. Paper 2 is based on the monitoring 

data on an steel bridge deck in Denmark to investigate the optimal monitoring 

campaign regarding the monitoring duration and phase and determine whether the 

service life of the monitored welds should be extended or not. Paper 3 is based on the 

obtained monitoring data from Crêt de l’Anneau Viaduct in Switzerland to determine 

whether to replace the viaduct after 60 years of service. 

Paper 4 and 5 are the applied research on wind turbines. Paper 4 investigates the 

optimal monitoring strategy for offshore wind turbines based on obtained monitoring 

information. Paper 5 addresses the issue of whether to place the ice heating system if 

the ice detecting system is already installed under freezing conditions for an onshore 

wind turbine near a highway.  

Another five peer-reviewed papers are not included in the thesis (see the list below). 

The reasons for exclusion are that the content of Paper 6 is already described in part 

of Paper 2, the content of Paper 7, 8 and 9 are included and summarised in parts of 

Paper 1. 

Paper 6 Long L., Farreras Alcover I., Thöns S. Quantification of the posterior utilities 

of SHM campaigns on an orthotropic steel bridge deck. IWSHM 2019, The 12th 

International Workshop on Structural Health Monitoring, Stanford, California, USA, 

10-12 September 2019 

Paper 7 Long L., Thöns S., Döhler M. The effects of deterioration models on the value 

of damage detection information. IALCCE 2018, The Sixth International Symposium 

on Life-Cycle Civil Engineering, Ghent, Belgium, 28-31 October 2018 

Paper 8 Long L., Thöns S., Döhler M. The effects of SHM system parameters on the 

value of damage detection information. EWSHM 2018, The 9th European Workshop 

on Structural Health Monitoring Series, Manchester, UK, 10-13 July 2018 

Paper 9 Long L., Thöns S., Döhler M. Damage detection and deteriorating structural 

systems. IWSHM 2017, The 11th International Workshop on Structural Health 

Monitoring, Stanford, California, USA, 12-14 September 2017 

Paper 10 Thöns S., Döhler M, Long L. On damage detection system information for 

structural systems. Structural Engineering International 28.3 (2018): 255-268.  

1.4.1. INTEGRATIONS AMONG CHAPTERS 

The integrations among chapters are shown in Figure 2. Quantifying the value of SHM 

information is based on the VoI principle and the SHM methodology as introduced in 

Chapter 2.  
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Section 2.1 covers the general aspects of SHM and its applications on bridges and 

wind turbines. Section 2.2 describes the VoI theory with decision analysis and 

Bayesian updating. Then Section 2.3 presents the Detection theory, which is the 

fundamental knowledge basis of SHM and is needed to be integrated into VoI 

analysis. With the computation effort of probabilistic modelling and life-cycle utility 

modelling in Section 2.4, the value of SHM information can be finally quantified.  

The chapters 3 to 7 (Paper 1 to 5) contain detailed mathematical/statistical methods 

and the applied methodology from Chapter 2, but with different emphasizing aspects 

of the examples of applications from the papers: 

Chapter 3 (Paper 1) addresses the pre-posterior decision analysis with consideration 

of influence parameters to probability of damage and influence of structural 

performance parameters.  

Chapter 4 (Paper 2) illustrates the posterior decision analysis taking into account the 

influence of utility modelling parameters.  

Chapter 5 and 6 (Paper 3 and 4) both present the conditional value of sample 

information analysis, with chapter 5 emphasizing the Bayesian updating with 

observed events and chapter 6 Bayesian updating of observed stochastic variables.  

Chapter 7 (Paper 5) addresses the value of action analysis.  
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Figure 2 Flowchart of methodological summary and integration of chapters 
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CHAPTER 2. EXTENDED 

METHODOLOGICAL SUMMARY 

This chapter provides a general overview of the topics of the thesis including an 

account for the current state of the art to the quantification of the value of monitoring 

information for deteriorated structures. It focusses on further reviewing the results of 

the papers included in the following chapters 3-7 and explains how the results are 

related to the current state of the art of the methodology.  

2.1. STRUCTURAL HEALTH MONITORING 

During the period of 1940-1960s, with the emerging of sophisticated measurement 

technologies, modern Non-destructive Evaluation (NDE) has seen rapid advancement 

in the development of penetrant test, eddy current and acoustic methods (composite 

tap testing, ultrasonic, acoustic emissions), as well as radiography and thermography 

[69]. However, these methods are primarily local which usually requires taking the 

system out of service for access, and they are somewhat qualitative. Due to the need 

for an online and automate damage detection method, the concept of SHM emerged 

from NDE in the 1980s and was developed at that time.  

Numerous practical SHM researches have been conducted in the offshore industry 

during the 70’s and 80’s owing to the high risks and costs involved in subsea 

inspections [70]. In 1979 a first systematic overview of SHM technologies and 

procedures of inspection and testing was published [71]. However, due to immature 

development of data treatment capabilities at that time, SHM was not commonly 

applied in parallel with inspection technologies [72]. SHM development has been 

accelerated over the last decades due to development of electronic data processing, 

storage technologies and data analysis algorithms. Today SHM is applicable to 

different kinds of structures, e.g., bridges, nuclear plants, buildings, and pipelines, not 

only to assist inspection and maintenance in the offshore sector. 

The aim of SHM is to establish methods for damage detection, evaluation, model 

recognition and feature extraction to tackle the functional and the environmental 

variation with the objective of damage diagnosis related to significant life-safety and 

economic benefits (see e.g., the most comprehensive review until 2001 [16], a recent 

review from 2011 [73] and [15]). Recently, SHM findings have been used for 

structural reliability evaluations to determine uncertainties in monitoring, update 

models and improve inspection planning (see e.g. [74], [75], [29], [76]) in various 

fields of engineering. 
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Now this field has broadened to transform monitoring information into decision 

making. Todd (e.g. [77], [78]) performs a method called Bayesian experimental model 

based on a risk and expected cost analysis to improve the sensor placement and 

performance for a monitored structure. Another approach is to use VoI theory to 

determine the value of SHM information as described in [28]. This implies that an 

experiment will be carried out if the expected expenses of performing the experiment 

for the particular case is smaller than the value of information. More detailed 

references on the quantifying value of SHM information have been stated in Chapter 

1.2. The knowledge of VoI theory will be presented in section 2.2. 

2.1.1. SHM PROCESS 

SHM strategies and measurement techniques, containing various physical 

technologies (hardware) and a broad range of data analysis algorithms (software) have 

been well developed. The algorithms for data analysis constitute a broad area of 

research focusing on data normalisation, uncertainty elimination, damage detection, 

damage evaluation, model recognition and feature extraction. Wang [79], [80] and 

Farrar [72] summarize the most detailed overview of sensor technologies, 

implementations, and data processing procedures. 

Around 2000, groups at Los Alamos and the University of Sheffield started to pose 

SHM as a problem in statistical pattern recognition [18], with realization that damage 

detection is not a deterministic problem. It opened the door to adopt technology from 

radar and sonar detection, speech pattern recognition, machine learning, 

econometrics, and statistical decision theory to the damage detection problem. Farrar 

and Worden [18] summarize the SHM process into the following four steps: 

1. Operational evaluation 

2. Data acquisition & network 

3. Feature selection & extraction 

4. Statistical model development 

2.1.1.1 Operational evaluation 

Operational evaluation defines the damage to be identified and address concerns 

regarding implementation issues for an SHM system, which can be considered as 

collecting a prior information to inform the SHM system design process. 

The prior information should answer the following questions: Why perform the 

monitoring (financial and life-safety rationales)? What are the expected damages 

(type, size, location, and time scale for damage evolution) to look for? What are the 

requirements of operational and environmental conditions? What are the legal and 

economic constraints? What are the limitations of operational environment on data 

acquisition? 
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In order to gather prior information, inputs from different sources, e.g., designers, 

technicians, maintenance staff, financial analysts and regulatory officials are needed. 

However, there are not many references that address the operational evaluation step, 

there is no widely accepted procedure to demonstrate the rate of return on investment 

in an SHM system. 

The newly recent development of quantifying the value of SHM information, which 

is also presented in this thesis aim to strengthen the operational evaluation by 

quantifying the benefit of an SHM system before its implementation. 

2.1.1.2 Data acquisition& network 

Once the assessment of the operation system is completed, the next step is to identify 

the sensing equipment and select the data for the feature extraction process, which is 

called Data acquisitions & network. 

The definition of SHM derives from techniques used in NDE, commonly known as 

non-destructive testing (NDT). The key distinction between NDE and SHM is that 

NDE requires the item be withdrawn from operation for the inspection, whereas SHM 

does not [18]. Based on the commonly used NDE methods, the sensing technologies 

in SHM are summarised in Table 2 together with the sensor types and their principles. 

Table 2 Summary of sensing technologies in SHM 

Sensing 

technologies 

Sensors Principle 

Conventional 

force/pressure 

sensing 

Piezoelectric and 

piezoresistive force 

and pressure 

transducers 

Deformation is proportional to the 

force applied to the material. 

Conventional 

strain sensing 

Strain gage The structure is attached to a foil that 

holds a wire, which is stretched or 

compressed as the structure deforms. 

Conventional 

acceleration 

sensing 

Piezoelectric 

accelerometer 

Base-excited spring mass system 

where the piezoelectric crystal is the 

stiffness element. 

Acoustic 

Emission (AE) 

sensing [81] 

Acoustic Emission 

Sensors 

Passive sensor that “listens” for elastic 

waves generated when damage 

initiates or propagates. 
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Fiber optic 

sensing [82] 

Fiber optic sensors  Light from a laser source is transmitted 

via an optical fiber, reaches a detector 

which measures these changes in its 

parameters in the optical fiber or fiber 

Bragg gratings. 

Piezoelectric 

transducer based 

SHM 

methodologies 

[83]  

Guided wave, 

Electro-mechanical 

impedance 

An electric charge will be produced 

when the materials are mechanically 

stressed. If an electric field is applied 

to the material, the material will also 

deform (produce a mechanical strain). 

Laser-based 

sensing 

techniques [84] 

Scanning laser 

Doppler velocimetry 

(LDV) 

Analysing reflected light using the 

principle of displacement. 

Video-based 

non-contact 

measurement 

[85] 

Photogrammetry 

using digital video 

cameras; Discrete-

point tracking; 

Digital image 

correlation (DIC) 

 

Obtaining 3D geometric information 

through stereoscopic image overlap of 

real objects. 

Mobile wireless 

robotic sensing 

technologies [86] 

UAV (Helicopter) 

Robotic for Visual 

Interrogation; 

Articulated 

Ultrasonic Robot 

Arm; Reinforced 

Concrete Toy Truck 

for Visual Inspection 

A combination of sensors (such as 

accelerometers or strain gages) and   

artificial intelligence (AI) and physical 

robotic elements. 

Microelectron- 

mechanical-

system (MEMS) 

sensors [88] 

MEMS Sensors 

(acceleration; gyro; 

strain sensing; 

ultrasonic 

inspection; 

temperature) 

A “microfabrication” of mechanical 

elements within a silicon integrated 

circuit process. 
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Vision-based 

measurement 

techniques [87] 

X-ray technology; 

Augmented Reality 

Tools for Enhanced 

Structural Inspection 

A high-Resolution, photo-realistic 3D 

model of the infrastructure 

automatically generated during 

inspection. 

 

After the sensing technologies are chosen and installed, the system’s dynamic 

response will be measured, and the measurement data will be obtained. According to 

[18], the data acquisition process can be divided into six parts: 1) excitation; 2) 

sensing; 3) analogy to digital conversation; 4) initial signal conditioning; 5) data 

storage and transfer; 6) data cleaning, normalization, compression, and fusion. More 

recent development has integrated data acquisition components with feature 

extraction as SHM software. 

2.1.1.3 Feature selection & extraction 

Selection and extraction of features is the process of distinguishing details related to 

damage from the measured data. Normally an inverse modeling approach is applied 

to identify indications of damage from measured system responses. For instance, if 

stiffness changes are detected, there may be crack in a mechanical part; if boundary 

condition changes are detected, scour may exist on the bridge pier; and if connectivity 

changes are detected, the bolted joint may be loosening. The measured response has 

a certain feature that is well associated with the damage, i.e., an indicator giving 

indirect information about the size of a defect. 

To recognize damages, it is intended to use the simplest feature possible to 

differentiate between the damaged and undamaged signals. There are three 

approaches to identify damage-sensitive features including experience and knowledge 

base, component and system testing and numerical analysis on how damage changes 

the system response. 

The commonly used three damage sensitive features are: 1) waveform or image 

comparisons, 2) features derived from linear and nonlinear model parameters and 3) 

features derived from residual errors between measured and predicted response. 

Several references can be found in [88-92] with relevant models and methods for 

damage identification.  

2.1.1.4 Statistical model development 

After the features are extracted, the challenge is to make an objective evaluation of 

the state of damage to a specific structure based on the extracted features. Five levels 

of decision challenges arising via a five-step damage-related process, along the line 

of hierarchy from Rytter [93].  
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• Level 1: Damage detection.  Does damage occur? 

• Level 2: Damage localization. Where is probable position of the damage? 

• Level 3: Damage classification. What kind of damage does it represent? 

• Level 4: Damage assessment. How big is the damage size? How severe is 

the damage?  

• Level 5: Damage prediction. How will the damage influence the residual life 

of the structure? 

However, it is often challenging to describe the interactive connection between the 

selected features and the structural damage state depending on an engineering physics-

based evaluation process. Farrar and Worden [16] suggested a machine learning-based 

method, more precisely, the pattern recognition dimensions of machine learning, 

utilizing mathematical models to transform features into real state performance-level 

decisions.  

The algorithms used in mathematical models of machine learning fall into two groups, 

1) supervised learning algorithms, utilizing training data accessible from both the 

undamaged and damaged structure, e.g., neural networks, classification and 

regression, support vector machines; 2) unsupervised learning algorithms, if only data 

from undamaged structures is accessible, e.g., outlier or novelty detection. However, 

the unsupervised learning nearly entirely addresses the level 1 problems and in certain 

instances level 2. Therefore, the only usage is the detection and determining the 

location of the damage. The detail theory of damage detection will be presented in 

Chapter 4. 

2.1.2. APPLICATION OF SHM 

2.1.2.1 SHM on bridges 

A summary of the application of SHM on five main types of bridges can be found in 

Inaudi [94] including concrete beam bridges [94], steel beam bridges [95], concrete 

cantilever bridges [96], arch bridges [97], cable stayed bridges [98] and suspended 

bridges [99]. The key risks or uncertainties that are generally correlated with each 

kind of bridge are shown in Table 3 in different colors [94]. The priority risks or 

uncertainties that need to be addressed first are marked with red. The very often 

relevant risks are denoted in orange. The least significant risks, which can be added 

when the budget allows for it, are indicated with green. 

Table 4 summarizes the usual predicted responses and the suggested sensors types to 

monitor each defined risk. The table can be viewed as a foundation step for the 

implementation of a bridge health monitoring system, which will be followed with 

detailed risk assessment for each single bridge component. 

Table 3 Typical risks and uncertainties associated with different bridge types. Recreated based 
on [94] 
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Legend: green = sometimes relevant; orange = usually relevant; red = always relevant 
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Table 4 Risks, responses, and candidate sensor types from [94] 

Risk/uncertainty on 

the bridges 

Response/consequences Proposed sensors 

Correspondence 

between finite element 

model and real 

behavior 

Strain distribution and 

magnitude different form 

model 

Local strain sensors 

including strain gauges, 

vibration wire gauges and 

fiber optic sensors, 

tiltmeters. 

Dynamic strain due to 

traffic, wind, 

earthquake, explosion, 

etc. 

Large strains, fatigue, 

cracks 

Local strain sensors, 

including strain gauges, 

vibration wire gauges and 

fiber optic sensors, with 

dynamic data acquisition 

systems. Distributed fiber 

optic sensors to detect ne 

crack. Crack-meters. 

Creep, relaxation of 

pre-stress 

Global deformations, 

bending 

Long-gauge fiber optic strain 

sensors, settlement gauges, 

tiltmeters, laser distance 

meters, topography 

Changes in cable 

forces 

Force and strain 

redistribution 

Local cells: vibration wires, 

resistive or fiber optics. 

Correspondence 

between calculated 

vibration models and 

real behavior  

Mode shapes and 

frequencies different 

from model 

Accelerometers, long-gauge 

fiber optic strain sensors. 

Non-working bearings 

and expansion joints 

Reduced movement, 

movements occur at 

wrong location, strain 

redistribution 

Joint meters: potentiometers, 

vibrating wire, or fiber optics 

Cracking of concrete 

or steel 

Crack opening Crack-meters: 

potentiometers, vibrating 

wire, or fiber optics 
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Temperature changes 

and temperature 

gradients in load 

bearing elements  

Strain redistribution, 

cracking 

Temperature sensors: 

electrical, fiber optics point 

sensors or distributed sensors  

Different settlement 

between piers or 

foundations  

Global movements, 

tilting, strain 

redistribution  

Laser distance meters, 

topography, settlement 

gauges, tiltmeters. 

Change in water table 

or pore water table or 

pore water pressure 

around foundations 

Change in pore water 

pressure 

Piezometers: vibration wire 

or fiber optics 

Stability of slopes 

around foundations 

and abutments 

Slope sliding Distributed fiber optic soil 

stability sensors, laser 

distance meters, 

inclinometers 

Change in the concrete 

chemical 

environment: 

carbonation, alkali 

silica reaction, 

chlorine penetration 

Corrosion of rebars Concrete corrosion and 

humidity sensors 

Environmental 

conditions  

Actions on bridge Weather station, wind speed 

measurement 

Traffic and overloads Actions on bridge  Weight-in-motion station, 

dynamic strain sensors 

Construction schedule 

and specific actions  

Difficulty in analyzing 

data  

Webcam, image capture and 

archival 

 

The application of SHM on bridges can be further found in case studies in Chapter 4 

(Paper 2: The Great Belt bridge, a suspension bridge.) and in Chapter 5 (Paper 3: Crêt 

de l’Anneau Viaduct, a composite concrete-steel road-viaduct). The SHM systems on 

the Great Belt bridge including strain monitoring system, traffic monitoring system 

(used by the toll system) and pavement temperature monitoring system are further 

introduced. The obtained SHM information on the Crêt de l’Anneau Viaduct includes 

the strain and the temperature of the concrete, the steel, and the air, which are 
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measured respectively by the strain gauges in steel reinforcement bars and 

thermocouples. 

2.1.2.2 SHM on wind turbines 

The overview of application of SHM on wind turbines depending on the monitoring 

components/objects, e.g., rotating drivetrain, rotor blades and onshore and offshore 

support structures can be found in [100], [101], [102] and [103] which is further 

summarized in Table 5. This includes monitoring components/objects, related risk, 

and uncertainty and proposed SHM. The application of SHM for electrical 

components, e.g., the main frequency converter, pitch and yaw systems are not 

covered as it is still under research and development.  

Table 5 Summary of SHM on wind turbines 

Monitoring 

component/objects 

Risk/uncertainty  Proposed SHM Ref. 

Rotating drivetrain 

components (main 

bearing, gearbox, 

generator bearing, 

tower oscillation) 

• Grid loss 

• Emergency stops 

• Grid faults 

• Generator short circuits 

• Crowbar events 

• Resonant vibration 

• Wind gusts 

• Control malfunctions 

• Curtailments 

• High wind shutdowns 

•Vibration-based 

SHM 

• Oil-based SHM 

•Others: Acoustic 

Emission (AE), 

thermography, 

electromechanical 

parameters, holistic 

SHM  

[104] 

Rotor blade • Lighting strike 

• Icing 

•Fatigue of the composite 

laminates, buckling in 

sandwich panels, bond line 

failure, root bolt 

connection  

• Rotor imbalance due to 

rain erosion, pitch control 

errors and mass differences 

from blade to blade 

• Overload due to pitch or 

yaw-control errors 

•Vibration-based 

SHM 

• Acoustic Emission 

(AE) 

• Ultrasonic wave 

propagation  

•Strain measurement 

•Deflection-based 

methods 

[105] 

Onshore support-

structure  

(Tubular steel 

tower/Lattice 

towers/Reinforced 

Tower: 

•Strong wind, 

•Insufficient strength of 

bolts 

•Poor bolt quality control 

•Strain gauges  

•Fiber optical sensors  

•Vibration and 

temperature sensors 

[106] 
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concrete 

tower/Hybrid tower 

with concrete in the 

bottom and tubular 

steel in the top) 

 

Foundation: 

•Cracks due to deficiencies 

in the design, poor 

workmanship, or 

inappropriate material 

selection 

•Inclination sensors; 

displacement sensors 

•Photometry and 

laser interferometry 

Offshore support 

structure (Monopile 

foundations/Jacket 

foundations 

/Gravity base 

foundation 

/Floating 

foundations) 

 

Foundation: 

•Storms or harsh 

environment 

•Fatigue of the Material  

•Scour at the seabed  

•Problems in grouted joints  

•Splash zone subjected to a 

highly corrosive 

environment  

•Corrosion 

•Strain gauges 

•Temperature 

sensors  

•Displacement 

sensors 

•Accelerometers  

•Additional sensors: 

inclinometers, load 

cells, wind speed and 

direction and wave 

height sensors 

[107] 

Operation and 

environmental 

condition  

•Storms or harsh 

environment 

 

SCADA supervised 

control and data 

acquisition system in 

10-minute interval: 

Wind speed, wind 

direction, active 

power, reactive 

power, ambient 

temperature, pitch 

angle, rotational 

speed (rotor and 

generator) 

 

 

The application of SHM on wind turbines can be further found in case studies in 

Chapter 6 (Paper 4) and Chapter 7 (Paper 5). In Chapter 6, the acquired SHM 

information for an offshore monopile wind turbine including meteo-oceanographic 

data from the SCADA system and stress ranges from strain gauges are introduced. In 

Chapter 7, for an onshore wind turbine under icing condition, an ice detection system 

and an ice heating system are introduced. 
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2.2. VALUE OF INFORMATION  

Quantifying the value of SHM information utilizes the value of information theory 

(VoI) and the methodology of SHM. The general aspects of SHM have been discussed 

in Section 2.1. Section 2.2 will focus on describing how the VoI theory works. The 

following Section 2.3 will present the detection theory involved in SHM, which is 

needed to be integrated into VoI analysis. 

2.2.1. GENERIC DECISION MODELLING 

The VoI theory is developed by Raiffer and Schlaifer [20]. The research of VoI 

utilizes Bayesian updating and decision theory based on utility, providing a way to 

evaluate the changes in the utility of obtained and predicted information. The decision 

format (a decision tree) in regards of SHM is shown in Figure 3 by [108], which 

contains the following five dimensions. 

• 𝑬 = {𝑒1, … , 𝑒𝑚} SHM Strategy  

SHM strategies are the options on how to implement SHM, e.g., selection or 

combination of sensing techniques, determination of monitoring duration and 

comparison of monitoring location, etc. Decision-makers are usually facing the choice 

of the optimal SHM Strategies, as different SHM strategies will result in different 

investment costs and monitoring costs, which lead to different lifecycle costs in 

maintaining structural integrity. Therefore, the SHM Strategies are presented by a 

‘square’ decision node in the decision tree. 

• 𝒁 = {𝑧1, … , 𝑧𝑚} SHM outcomes 

SHM outcomes are information to determine the actual state of the structures, e.g., 

detection of damage or no detection of damage. However due to the uncertainty of the 

sensing technologies and the physical (and model) uncertainty of modelling a damage 

process, it is hard to find an absolute SHM outcome. Therefore, a probability 𝑃(𝒁) is 

used to describe the frequency of appearing SHM outcomes. The SHM outcomes in 

the decision tree are presented with a chance node ‘circle’. 

• 𝑨 = {𝑎1, … , 𝑎𝑚} Actions 

Actions are the methods that could be taken to affect (improve or maintain) the 

physical states of the structure, e.g., do nothing, repair, rehabilitation and replace etc. 

As the choice of actions will influence the structure system performance, decision-

makers need to make decisions on the optimal actions depending on the SHM 

outcome. Therefore, the actions in the decision tree will be presented by the ‘square’ 

decision node. 
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• 𝜽 = {𝜃1, … , 𝜃𝑚} System states  

System states describe the physical status of the structure, e.g., safe, minor damaged, 

major damaged and failed. However, there is uncertainty towards the true state of the 

system structure. Therefore, a probability 𝑃(𝜽)  can be assigned to describe the 

knowledge of belief on the system states. The system states in the decision tree are 

presented with a chance node ‘circle’. 

• 𝑢(𝑒, 𝑧, 𝑎, 𝜃) Utility Evaluation 

With a certain SHM strategy performed, SHM outcome obtained, action implemented, 

and system state predicted, it leads to a value or utility 𝑢(𝑒, 𝑧, 𝑎, 𝜃) . The utility 

function 𝑢 contains all the costs and benefits as well as the consequences involving 

the decisions on the structure integrity management, which will be presented in 

Section 2.4 in detail. The utility is presented with a ‘diamond’ node in the decision 

tree. 

Usually, a structural system may be under a set of structural states 𝜽 = {𝜃1, … , 𝜃𝑚} 

representing different health status. A probabilistic structural system reliability model 

will be used to compute the probabilities of the structural states 𝑃(𝜽). A set of possible 

actions 𝑨 = {𝑎1, … , 𝑎𝑚} are needed to be chosen to deal with the uncertain system 

states. To obtain more information related to the choice of a proper action, decision 

makers may have various options to carry out certain SHM strategies 𝑬 = {𝑒1, … , 𝑒𝑚}, 

like different types of sensing technologies. The set of SHM strategies will have a set 

of potential outcomes 𝒁 = {𝑧1, … , 𝑧𝑚} with a probability of detecting outcomes 𝑃(𝒁) 

which provide information on the actual structural state, which will be further 

described in Chapter 4. The decisions of actions and SHM strategies are determined 

by the order of the expected values of the utility 𝑢(𝑒, 𝑧, 𝑎, 𝜃). Examples of decision 

trees can be found in case studies from Chapter 3 to 7 (Paper 1 to 5). 

 

 

Figure 3 Decision format in the context of SHM 
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2.2.2. DECISION ANALYSIS 

There are three different decision analysis types relying on the status of knowledge at 

the point of the assessment, namely prior decision analysis, posterior decision analysis 

and pre-posterior decision analysis. 

2.2.2.1 Prior decision analysis 

Prior decision analysis applies to a circumstance where the utility function is known 

and the probabilities of the particular system state leading to various consequences 

have been predicted, which means that 𝑃(𝜃) is given after a certain action 𝑎 is chosen. 

The action 𝑎 in the prior decision analysis is determined by initial design based on 

prior knowledge of uncertainties. Assume there are 𝑚  system states in total, 𝜽 =
{𝜃1, … , 𝜃𝑚}. The expected utility of an action 𝑎 is calculated by Eq. 1. 

 

𝐸𝜃
′ [𝑢(𝑎, 𝜃)] = ∑ 𝑢(𝑎, 𝜃𝑗)

𝑚

𝑗=1

𝑃′(𝜃𝑗) 

 Eq. 1 

 

To make a differentiation, 𝑃′(𝜃𝑗) is used to represent the assigned probability at state 

𝜃𝑗 , which is called prior probability. After the calculation of all the expected utilities 

of different actions, the decision analysis consisting of choosing the best action will 

lead to the highest expected utility 𝑈′, shown in Eq. 2. 

𝑈′ = 𝑚𝑎𝑥
𝑎

𝐸𝜃
′ [𝑢(𝑎, 𝜃)]  Eq. 2 

 

𝑈′ is called prior expected utility. 

2.2.2.2 Posterior decision analysis 

Posterior decision analysis refers to a case where empirical evidence is available, 

indicating that a certain SHM experiment 𝑒  has been applied and the experiment 

findings 𝑧 are understood. The probability of the structure system state in the decision 

problem can be updated as 𝑃′′(𝜃𝑗) by use of the Bayes’ rule illustrated by Eq. 3. 

𝑃′′(𝜃𝑗)  = 𝑃(𝜃𝑗|𝑧) =
𝑃(𝑧|𝜃𝑗)𝑃′(𝜃𝑗)

∑ 𝑃(𝑧|𝜃𝑗)𝑃′(𝜃𝑗)𝑚
𝑗=1

 
 Eq. 3 
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Where 𝑃(𝑧|𝜃𝑗)  is the likelihood function of the experiment outcome 𝑧 . Once the 

posterior probabilities 𝑃′′(𝜃𝑗) are determined, the decision procedure is similar to that 

explained before, the probability 𝑃′(𝜃𝑗) is simply replaced by 𝑃′′(𝜃𝑗) in the Eq. 1. 

𝐸𝜃|𝑧
′′ [𝑢(𝑧, 𝑎, 𝜃)] = ∑ 𝑢(𝑧, 𝑎, 𝜃𝑗)

𝑚

𝑗=1

𝑃′′(𝜃𝑗) 

 Eq. 4 

 

The maximum expected utility can be selected by 

𝑈′′ = 𝑚𝑎𝑥
𝑎

𝐸𝜃|𝑧
′′ [𝑢(𝑧, 𝑎, 𝜃)]  Eq. 5 

 

𝑈′′ is called posterior expected utility. 

2.2.2.3 Pre-posterior decision analysis 

In this situation, the SHM technique or the trial is prepared but the result remains 

uncertain, which involves decisions on which exact SHM strategy 𝑒 to choose and 

what action 𝑎  to take. The pre-posterior analysis is based on assumptions and 

knowledge of belief.  

It is assumed that an SHM experiment  𝑒 is chosen and the probability of the outcome 

of experiment  𝑧 can be assigned. Knowing that the decision 𝑒 is yet to be done its 

outcome 𝑧 is a random variable. The maximum utility 𝑈′′(𝑒, 𝒛) needs to be calculated 

for each outcome (𝑒, 𝑧). Assuming 𝒁 = {𝑧1, … , 𝑧𝑙}, there are a total of 𝑙 outcomes. 

𝑃(𝑧𝑘 , 𝑒)  represents the probability of detecting outcome 𝑧𝑘  with the SHM experiment 

𝑒. The expected values of the utility for every potential action can be found through 

Eq. 6. The maximum utility 𝑈′′′ can be selected by Eq. 7. 

𝐸𝑧|𝑒[𝑈′′(𝑒, 𝑧)] = 𝑚𝑎𝑥
𝑎

∑ 𝑈′′(𝑒, 𝑧𝑘)

𝑙

𝑘=1

𝑃(𝑧𝑘, 𝑒)  

= 𝑚𝑎𝑥
𝑎

∑ ∑ 𝑢(𝑒, 𝑧, 𝑎, 𝜃)

𝑙

𝑘=1

𝑃(𝑧𝑘 , 𝑒) 𝑃(𝜃𝑗|𝑧𝑘)

𝑚

𝑗=1

= 𝑚𝑎𝑥
𝑎

∑ 𝑢(𝑒, 𝑧, 𝑎, 𝜃)𝑃′′′(𝜃𝑗) 

𝑚

𝑗=1

 

 Eq. 6 

𝑈′′′ = 𝑚𝑎𝑥
𝑒

𝐸𝑧|𝑒 [𝑚𝑎𝑥
𝑎

𝐸𝜃|𝑧
′′ [𝑢(𝑒, 𝑧, 𝑎, 𝜃)]] 

 Eq. 7 
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𝑈′′′  is called the pre-posterior expected utility. 𝑃′′′(𝜃𝑗) = 𝑃(𝑧𝑘, 𝑒) 𝑃(𝜃𝑗|𝑧𝑘) is the 

predictive probability, which can be computed as 𝑃(𝑧𝑘 ∩ 𝜃𝑗). The computation details 

can be found in Section 2.4.1. 

Therefore, the pre-posterior Bayesian decision analysis will then be used to determine 

the benefit of the information that has not yet been obtained on the basis of models 

describing predictions for this yet uncertain information, with the latest relevant facts 

at the moment of the decision. 

An application of pre-posterior Bayesian decision analysis is further developed in 

Chapter 3 (Paper 1) with focus on whether to install the Damage Detection System 

(DDS), when, where and how to install the DDS, are analyzed before the monitoring 

data of the DDS is obtained in chapter 3. The applications of posterior Bayesian 

decision analysis are further presented in case studies in Chapter 4, 5 and 6 (Paper 2, 

3, 4). The monitoring data of welds on a steel bridge deck (Paper 2), the SHM data 

for the road viaduct (Paper 3) and the structural and meteo-oceanographic monitoring 

data for offshore wind turbines support structures (Paper 4) have already been 

obtained at the time of the decision analysis. Chapters 4 to 6 utilize the monitoring 

data to support lifecycle maintenance planning and service life extension. 

2.2.3. VALUE OF INFORMATION ANALYSIS 

The expected VoI can be defined as the discrepancy between the maximum utility 

from the pre-posterior analysis and the maximum utility using only prior knowledge 

without extra information, which is shown in Eq. 8. 𝑉𝑜𝐼𝑒
̅̅ ̅̅ ̅̅  in Eq. 9 is called the relative 

VoI. 

𝑉𝑜𝐼𝑒 = 𝑈′′′ − 𝑈′ = 𝑚𝑎𝑥
𝒆

𝐸𝒛|𝒆 [𝑚𝑎𝑥
𝒂

𝐸𝜽|𝒛
′′ [𝑢(𝒆, 𝒛, 𝒂, 𝜽)]]

− 𝑚𝑎𝑥
𝒂

𝐸𝜽
′ [𝑢(𝒂, 𝜽)] 

 Eq. 8 

  

𝑉𝑜𝐼𝑒
̅̅ ̅̅ ̅̅ =

𝑉𝑜𝐼𝑒

|𝑈′|
 

 Eq. 9 

 

If the expense of obtaining information is small relative to the potential gain, the 

experiment will be carried out. When various kinds of monitoring techniques are 

feasible, the technique resulting in the overall maximum expected utility should be 

selected [109].  
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2.2.3.1 Two forms of analysis 

There are two forms of analysis: the extensive form and the normal form. Even if the 

two forms are mathematically equal and contribute to similar results, each has 

technical advantages in certain cases. In both forms, the prior decision analysis is 

analyzed in the same manner without supplementary information. 

The extensive form of analysis starts from the end of the decision tree (the right side 

of Figure 2) to the original starting point by working backwards. First, it specifies an 

optimal action 𝑎  corresponding to the potential result 𝑧  of each SHM strategy, 

therefore indirectly defining the optimal decision rule for any 𝑒 . The Bayesian 

updating is required in the process of computation. The equations of the extensive 

form have been described in Section 2.2.2. 

The normal form of analysis proceeds by operating from the left side to the right side 

of the decision tree. The decision tree is described with the decision rules 𝒅(𝒛) = 𝒂 

connecting the adaptive action with the knowledge acquirement strategy 𝑒 and the 

strategy outcomes 𝑧. It starts by specifically evaluating every feasible decision rule 𝑑 

for a given 𝑒 and then choosing the optimal decision rule of action 𝑎 for each outcome 

of 𝑒. After this has been done for all 𝑒  in 𝑬, the optimal combination (𝑒∗, 𝑑∗) of 

decision rule 𝑑∗ for action 𝑎∗ of strategy 𝑒∗ is selected to compute each performance 

state the same way as done in the extensive form.  

𝑈′′′(𝑒∗, 𝑑∗) = 𝐸𝜃 [𝐸𝑧|𝜃
′′ [𝑢(𝑒∗, 𝑧, 𝑑∗, 𝜃)]]  Eq. 10 

 

Compared to the extensive form, normal form analysis is more efficient on 

computation, as there are no necessary operations and only the optimal branches 

needed to be considered, which may be known before. 

2.2.3.2 Types of VoI analysis 

The VoI in most cases is referring to the expected VoI, which equals the maximum 

utility from pre-posterior analysis minus the maximum utility using only prior 

information. However, if the money has been already spent to obtain additional 

information and the evaluation is conditional on the SHM outcomes, it is called the 

conditional VoI, which equals to the maximum utility from posterior analysis minus 

the maximum utility from only prior knowledge. 

Depending on the uncertain level of the information, it can be sample information or 

perfect information. Sample information refers to information with uncertainty and a 

finite precision, which is applied in most of the cases. Perfect information refers to 

information without uncertainty, which is quite rare.  
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So that the VoI can be distinguished into four types: conditional value of perfect 

information (CVPI), expected value of perfect information (EVPI), conditional value 

of sample information (CVSI) and expected value of sample information (EVSI). The 

illustration of a case study on CVSI can be found in Chapter 5 (Paper 3) and Chapter 

6 (Paper 4). Chapter 5 quantified the utilities difference of the obtained SHM 

information on a road viaduct with the prior information. Chapter 6 quantified the 

utilities difference of the collected three-year SCADA information and additional one-

year strain monitoring information with the prior information. 

Recently, Thöns and Medha [32] established an expanded framework for describing 

the VoI and introduced the modern definition of the value of actions and the value of 

actions and information analysis. The extended classification of decision analysis is 

shown in Figure 4. The strategy, outcome, action, and state indexes (𝑒, 𝑧, 𝑎, 𝜃) are 

presented with (𝑠, 𝑧, 𝑎, 𝑋) . The index 𝑖  is added to assign structural management 

strategy related actions and information, the random variable 𝑌  accounts for the 

uncertainty of action implementation. Depending on the acquisition condition of 

information and the operation state of actions (the continuous lines present the not yet 

implemented decisions and the dashed lines present the already implemented 

decision), the types of decision analysis are defined as: 

• Predictive Analysis (PA), which only addresses the action prediction without 

information and is analogous to a prior decision analysis. 

• Predictive Information (PI) analysis, which refers to decision analysis with 

only predictive information and without action. 

• Predictive Information and Implemented Action (PIIA) analysis, which 

refers to decision analysis with predictive information and implemented 

action. 

• Obtained Information and Predictive Action (OIPA) analysis, which is 

analogue to a posterior decision analysis. 

• Predictive Information and Predictive Action decision analysis (PIPA), 

which is analogue to a pre-posterior decision analysis.  

• System State Analysis (SSA), which is used to addresses the basic decision 

whether to incorporate any information acquisition and action execution 

strategies. 
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Figure 4 Illustration of the extended classification of decision analyses with decision trees from 
Thöns and Medha [32] 

According to Thöns and Medha [32], 20 kinds of decision related value analysis 

applications can be obtained by rearranging all combinations of the decision analysis 

classification as shown in Figure 5. It extends the VoI analysis into value of action 

analysis and value of information and actions analysis. The new definitions are: 

1) Value of information analysis, in which the anticipated increase of utility is 

purely due to information predicted or already obtained. 

2) Value of actions analysis, in which the decision is entirely due to predicted 

or already applied actions. 

3) Value of information and action analysis, in which an expected utility gain 

is achieved by both information and actions – independent of their 

deployment status. 
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Figure 5 Decision value analyses by combining different types of decision analyses from Thöns 
and Medha [32] 

An application of value of action analysis is implemented in Chapter 7 (Paper 5). It 

presents the different choices of decision actions scenarios for wind turbines along the 

highway under icing condition. The expected utility is gained according to predicted 

actions, which provides a decision basis on whether to implement an action. 

 

2.2.3.3 Decision scenario modeling 

The application of VoI analysis can be summarized into four steps: 

• Derivation of the decision problem 

The description of the decision problem should involve the recognition of the decision 

maker, decision alternatives and illustration of the decision scenario with e.g., a 

decision tree. An example of formulation of the decision scenario can be found in 

Table 6 from case study classification of COST Action TU1402 [110]. 

• Identification and assessment of potential consequences and their utility 

(cost/benefit) 

When a decision problem is formulated, the potential consequences and their cost and 

benefits analysis related to the utility function 𝑢(𝑒, 𝑧, 𝑎, 𝜃) should be assessed. The 

expanded consideration of utility analysis can be found in Section 2.4.2. 
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Table 6 Formula of decision problem from COST Action TU1402 [110] 

    Description Pre-description 

Structure 

Type   
Bridge, wind Turbine, 

Building, … 

Life cycle Phase   

Which phases are considered in 

the decision analysis: design, 

construction, operation, 

decommissioning … 

Performance   
Extreme loading, deterioration, 

fatigue, corrosion… 

Decision 

scenario 

Decision maker   
Manager, Operator, owner, 

engineer 

Decision point in 

time 
  

Design phase, operation and 

maintenance phase or 

decommission phase… 

Objective   Aim of the decision analysis 

Decision 

variables 

Actions   
E.g., Repair, maintenance, 

replace 

Action parameters   
Which parameters of the actions 

are varied? 

Information 

acquirement 

strategies 

  

E.g., strain gauge measurements, 

accelerometer sensor, damage 

detection etc. 

Strategy 

parameters 
  

Which parameters of the 

information acquirement 

strategies are varied? 

Results 

Value of 

Information 
    

Decision rules   

What is the relation between 

action and the information 

outcome? 

Readiness level 

  Based on Horizon2020 

Technology readiness levels 

(TRLs) 

 

• Calculation of the probabilities of the scenario branches 
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The probability of detecting outcomes 𝑃[𝒁] can be obtained through detection theory 

from section 2.3. The methods to calculate the probabilities of the structural states 

𝑃[𝜽] can be found in Section 2.4.1. 

• Decision making through comparing the different decision alternatives 

depending on their expected utilities. 

After all the expected utilities are calculated, the decision can be made through 

ranking the expected utilities of different decision alternatives. It is to be noted that 

all the underlying assumptions and limitations should be documented together with 

the decision alternatives. 

2.2.4. BAYESIAN UPDATING 

When new information is available, the estimation of probability of failure needs to 

be updated. The updating method which can be used is called Bayesian updating. 

2.2.4.1 Bayesian updating of observed events 

When the new information is the observation of events, the updating can be performed 

by modelling the observation as an event margin. The failure event can be modelled 

as a safety margin. This kind of observed events can be: 

• Monitoring outcome, e.g., indication of damage when the signal is over 

a certain threshold. 

• Inspection event, e.g., measurement of crack size in steel structures. 

• Repair event, e.g., a structure gets repaired and behaves like a new one. 

• Proof loading event where a determined load is added before a level of 

damage is detected. 

Let 𝐻  represent the observed events, ℎ  is the limit state function. The actual 

measurements can be interpreted as realizations of the stochastic variable. 

𝐻 = ℎ(𝑋)  Eq. 11 

 

The updated failure probability can be computed by: 

𝑃(𝐹|𝐻) = 𝑃(𝑔(𝑋) ≤ 0|ℎ(𝑋) ≤ 0) =
𝑃(𝑔(𝑋) ≤ 0 ∩ ℎ(𝑋) ≤ 0)

𝑃(ℎ(𝑋) ≤ 0)
 

 Eq. 12 
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The probability of failure event given an observed event 𝑃(𝐹|𝐻) is equal to 
𝑃(𝐹∩𝐻)

𝑃(𝐻)
. 

𝑃(𝑔(𝑋) ≤ 0 ∩ ℎ(𝑋) ≤ 0) can be expressed as the probability of a two-component 

parallel system, which can be easily evaluated using methods mentioned in Section 

2.4.1.6. 

One of the examples of Bayesian updating with observed events is developed in 

Chapter 3 (Paper 1), where the monitoring outcome (probability of damage indication) 

is updated to the failure event (probability of failure). 

2.2.4.2 Bayesian updating of stochastic variables 

If the new information is samples or measurements of a stochastic variable, the 

updating can be carried out using Bayesian statistics. This type of information could 

be temperature, wave height, wind speed, etc.  

As defined, 𝑋 is the stochastic variables vector,  𝑓𝑋(𝑥) is the PDF of 𝑋. Let q denote 

a vector of parameters that describes the distribution of 𝑋, e.g., mean and standard 

deviation, which are realizations of Q. The original density function for the parameters 

Q is seen as a prior density function denoted by 𝑓𝑄
′(q). 

x̂ is the sample of the stochastic variable 𝑋 . If x̂ = (𝑥̂1, 𝑥̂2, … , 𝑥̂𝑛) is containing 𝑛 

realizations and they are available, this information can be updated into 

𝑓𝑄
′(q). 𝑓𝑄

′′(q|x̂) is the updated density function of the uncertain parameters Q given 

the realizations and is often called as posterior density function. 

𝑓𝑄
′′(q|x̂) =

𝑓𝑁(x̂|q)𝑓𝑄
′(q)

∫ 𝑓𝑁(x̂|q)𝑓𝑄
′(q)𝑑q

 
 Eq. 13 

 

𝑓𝑁(x̂|q)=∏ 𝑓𝑋(𝑥̂𝑖|q)𝑁
𝑖=1   Eq. 14 

 

𝑓𝑁(x̂|q) is the PDF given observations of distribution parameters that are assumed to 

be q. 𝑓𝑋(𝑥̂𝑖|q) is the conditional PDF of 𝑓𝑋(𝑥). The density function of the stochastic 

variable 𝑋 given the realization x̂ is predicted by: 

𝑓𝑋(𝑥|x̂) = ∫ 𝑓𝑋(𝑥|q)𝑓𝑄
′′(q|x̂)𝑑q 

 Eq. 15 

 

An example of Bayesian updating of observed stochastic variables is presented in 

Chapter 6 (Paper 4), where the continuous wind speed from the SCADA system is 

updated using Bayesian statistics. 
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2.3. DETECTION THEORY  

The fundamental problem in the SHM field is the identification of the damage. To 

answer the question “Is it damage?”, the detection theory has been developed. The 

detection theory emerged in the first half of this century from the growth of 

communications and radar equipment [111], which adopted mathematical 

development from theories of statistical inference. Peterson, Birdsall and Fox 

introduced the basic principle in 1954 [112] as a basis for measuring the efficiency of 

statistical tests and classifiers. Later in 1966, it was applied in psychophysics, see e.g., 

Swets & Green [113]. The detection theory follows directly from the theory of 

hypothesis testing [114].   

2.3.1. HYPOTHESIS TEST 

A hypothesis testing is done by expressing the problem as an assertion that some 

hypothesis is true. Then a numerical test will be constructed and applied to the data, 

and the hypothesis is accepted or rejected depending on the result of the test. There 

are three steps for the process of hypothesis testing. First, a null hypothesis 𝐻0 needs 

to be formulated, then an alternate hypothesis 𝐻1 needs to be proposed which is the 

alternative to the null hypothesis. Finally, a criterion (threshold) needs to be 

established to either accept or deny the null hypothesis 𝐻0 since rejecting the null 

hypothesis means supporting the alternate hypothesis. 

However, during the hypotheses testing two kinds of errors may occur, namely, 

rejecting 𝐻0 when it is true or acknowledging 𝐻0 when it is wrong. These two types 

of errors are known as Type I error and Type II error respectively (Table 7). Type I 

error is also called False Alarm or False Positive. Type II error can also be called False 

Negative.  

Table 7 Hypothesis testing 

 𝐻0 is right 𝐻1 is right 

 Acceptance of  𝐻1 Type I error (False alarm, 

False positive) 

True positive 

 Acceptance of  𝐻0 True negative Type II error (False 

negative) 
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2.3.1.1 Type I and Type II errors in damage detection 

To differentiate between the damaged and undamaged system and recognize the 

damage, 𝐻0  is used to represent the hypothesis of the undamaged state. When the 

healthy state of the structure with SHM is measured, only the noise will be recorded. 

𝐻1  is used to represent the hypothesis of damaged states. When the structure is 

damaged, the SHM system will record both the noise and the damage signal.  

If the measurement signal of a healthy (undamaged) structure is plotted in a histogram, 

it can be described with a PDF 𝑓𝑠(𝜇0, 𝜎0) with mean value 𝜇0 and standard deviation 

𝜎0, a function of test results/signal 𝑠. If the measurement signal of a damaged structure 

is plotted in a histogram, it can be described with a PDF 𝑓𝑠(𝜇1, 𝜎1) with mean value 

𝜇1  and standard deviation 𝜎1 , which will be different from 𝑓𝑠(𝜇0, 𝜎0) . Then a 

threshold 𝑆𝑡  is set to differentiate these signals, e.g., it detects no damage if the 

measurement is below the threshold, then the damaged and undamaged signal will be 

differentiated. Figure 6Figure 6 describes the measurement signals distribution 

between damaged states and undamaged states.  

 

Figure 6 Schematic illustration of signal distribution between a damaged and undamaged 
structure 

Follow the definition from the decision problem in Section 2.2, the hypothesis can be 

written directly as system state 𝜽 with damaged state 𝐷 and undamaged state 𝐷̅, the 

SHM outcomes 𝒁 will be damage detected 𝐼 or damage undetected 𝐼.̅  Therefore, the 

Type I error is detecting damage when there is no damage and Type II error is 

detecting no damage when damage exists, which are described in Table 8. 
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Table 8 Type I and Type II error in SHM  

SHM outcomes 𝒁 System state 𝜽 

Damaged 𝐷 Undamaged 𝐷̅ 

Detected 𝐼 Probability of detecting 

damage 𝑃𝑜𝐷(𝐷) =
𝑃(𝐼|𝐷) 

Type I error rate, 

probability of false alarm 

𝑃𝐹𝐴 = 𝑃(𝐼|𝐷̅) 

Undetected 𝐼 ̅ Type II error rate 𝑃(𝐼|̅𝐷) 𝑃(𝐼|̅𝐷̅) 

 

Then the probability of detecting damage (PoD) can be written as 𝑃(𝐼|𝐷), which is 

calculated by Eq. 16 and shown in Figure 7. The probability of false alarm (PFA), also 

known as Type I error rate, is written as 𝑃(𝐼|𝐷̅), which is calculated by Eq. 17 and 

shown in Figure 7. The Type II error rate is 𝑃(𝐼|̅𝐷), which is calculated by Eq. 18. 

From the Eq. 16 and Eq. 17, it is seen that the value of PoD and PFA will be largely 

influenced by the threshold value 𝑆𝑡. 

𝑃𝑜𝐷 = 𝑃(𝐼|𝐷) = ∫ 𝑓𝑠(𝜇1, 𝜎1)𝑑𝑠

∞

𝑆𝑡

 

 Eq. 16 

𝑃𝐹𝐴 = 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝐼|𝐷̅) = ∫ 𝑓𝑠(𝜇0, 𝜎0)𝑑𝑠

∞

𝑆𝑡

 

 Eq. 17 

𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝐼|̅𝐷) = ∫ 𝑓𝑠(𝜇1, 𝜎1)𝑑𝑠

𝑆𝑡

−∞

= 1 − 𝑃𝑜𝐷 

 Eq. 18 

𝑃(𝐼|̅𝐷̅) = ∫ 𝑓𝑠(𝜇0, 𝜎0)𝑑𝑠

𝑆𝑡

−∞

= 1 − 𝑃𝐹𝐴 

 Eq. 19 
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Figure 7 Schematic illustration of Probability of detecting damage (PoD) and probability of 
false alarm (PFA) 

 

2.3.1.2 Effects of threshold 

Supposing that an SHM implementer chose a low threshold (Figure 8, top), so that the 

monitoring device will respond “Damage detected” to almost every measurement, 

then they will never miss any damage when it is present, and they will therefore have 

a high PoD. On the other hand, responding “Damage detected” to almost everything 

will greatly increase the number of false alarms (potentially triggering unnecessary 

remedies actions), which will in turn result in high maintenance costs.  

If the SHM implementer chose a high threshold (Figure 8, bottom), then the 

monitoring device will respond “No damage detected” to almost each measurement. 

Then a false alarm will rarely occur, but existing damage may be neglected, which 

may cause potential risk to the structure and lead to dramatic loss due to not taking 

remedies actions promptly. The choice of threshold thus implies that there is a trade-

off between PoD and PFA. 
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Figure 8 Effects of shifting the threshold  

 

2.3.1.3 Probability of damage 

The probability of damage (PoD) is not only influenced by the threshold but will also 

be influenced by the properties of the measurement system and stochastic system 

properties, which are further discussed in Chapter 3 (Paper 1). In chapter 3, the 

performance of the Damage Detection System (DDS) is investigated according to 

different scenarios, including changes of sensor numbers, sensor node locations, 

measurement noise, Type I error, and deterioration rate.  

According to the computed results of the PoD on a truss system in each monitoring 

year in Figure 9 (here 𝑃(𝐼|𝑫(𝑡𝑚)) = 𝑃𝑜𝐷), it is more probable to detect the damage 
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with more sensors, proper sensor locations, less measurement noise, and less Type I 

error.  

  

  
 
Figure 9 PoD with changes of number of sensors, sensor locations, measurement noise and 
Type I error. Adapted from [148]. 

 

2.3.2. RECEIVER OPERATING CHARACTERISTIC 

These two values: PoD and PFA can be mapped against each other as a function of 

threshold using a Receiver Operating Characteristic (ROC) curve. The ROC curve is 

aimed to measure the quality of the test. The impact of adjusting the threshold point 

along with the ROC curve is illustrated in Figure 10 which describes the general 

performance of a hypothesis test [115]. 
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Figure 10 ROC curves with different values of Threshold [115] 

Another measure of how well a hypotheses test performs as a comparative 

performance metric is the Area Under the ROC curve (AUC) or c-statistic [116]. The 

ROC curve can also be used to locate the value where the overall misclassification 

(Type I error plus Type II error) is at its minimum to determine the optimal cut-off 

value for a test [115]. 

2.3.2.1 Discriminability index 

When the threshold value is fixed, the ROC curve is varied with the degree of 

separation provided by the discriminability index 𝑑′  between two distributions 

𝑓𝑠(𝜇0, 𝜎0) and 𝑓𝑠(𝜇1, 𝜎1). This is the disparity between the mean value of the two 

distributions divided by sum of their standard deviation [117]: 

𝑑′ =
𝜇1−𝜇0

𝜎1 + 𝜎0

 
 Eq. 20 

 

According to Figure 11 from [115], it is indicated that the discriminability index 

increases with rising distinction (decreased overlap) between the distributions,  

(Figure 11, right side) and the middle of the ROC curve goes up to the top left corner 

of the curve (Figure 11, left side). So that it is needed to choose a damage detection 

test in which its performance is approaching the upper left of the ROC curve. However, 

to achieve a reliable discriminability index, the distributions must have a normal 

distribution with identical standard deviations, which is challenging to satisfy in 

reality. 
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From Figure 11, it is visible that a narrower test distribution with less overlap will 

contribute to easily distinguish the damage signal and health signal. As it is known 

that the measured signal of the damaged state contains both the noise and damage 

signal, if the noise in the measurement variable can be reduced as much as possible, 

the performance of damage detection tests may be improved [115].  

 

Figure 11 ROC curves [115] with different values of discriminability index  

 

2.3.3. BAYES RISK APPROACH 

Apart from the value of information-based decision approach building upon the 

decision theory in Raiffa and Schlaifer [18] described in Section 2.2, an alternative is 

the Bayes risk approach [114] which minimize the probability of making an error (i.e., 

a wrong decision). The distinction between Bayes risk approach and the value of 

information-based decision theoretical approach is that the Bayes risk approach aims 

to minimize the expected loss in case of a wrong decision while the value of 

information-based decision theoretical approach aims to maximize the expected 

benefits/utilities through optimizing decisions. 

As described in Section 2.2, based on the SHM outcomes, decision makers need to 

take proper actions depending on the detection results, e.g., inspect / halt operation / 

repair if detecting damage; do nothing if not detecting damage. However, due to the 

existence of the Type I and Type II error, there are four types of consequences when 

taking the actions as seen in Table 9. 
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𝐶𝐷|𝐼   the consequences of taking a necessary inspection / halting operation /repair 

action when detecting damage 𝐼 and the structure is damaged 𝐷, which is linked to 

the probability of detecting damage (PoD). 

𝐶𝐷̅|𝐼̅ the consequences of doing nothing and continuing operation when detecting no 

damage 𝐼 ̅and the structure is undamaged 𝐷̅, which normally costs nothing. 

𝐶𝐷̅|𝐼 the consequences of taking an unnecessary inspection / halting operation /repair 

action when detecting damage 𝐼  but the structure is undamaged 𝐷̅ , which is the 

consequence of Type I error (False alarm). 

𝐶𝐷|𝐼̅ the consequences of doing nothing and continuing operation when detecting no 

damage 𝐼 ̅but the structure is damaged 𝐷, which is the consequence of Type II error. 

Table 9 Consequences of actions based on SHM outcomes 

Actions 𝒂 based on 

SHM outcomes 𝒁 

System state 𝜽 

Damaged 𝐷 Undamaged 𝐷̅ 

Inspect/halt 

operation/repair if 

detected 𝐼 

Necessary Inspect / halt 

operation/ repair costs 𝐶𝐷|𝐼   

Type I error consequences, 

unnecessary inspect/halt 

operation/ repair costs 𝐶𝐷̅|𝐼 

Do nothing if 

undetected 𝐼 ̅

Type II error consequences, 

potential loss without timely 

remedies 𝐶𝐷|𝐼̅ 

No consequences 𝐶𝐷̅|𝐼̅ = 0  

 

The total Bayes risk is the sum of the expected value of the four kinds of 

consequences, which is also called as expected loss. So that the Bayes risk 𝐸(𝐿)(𝑒)  
for a SHM strategy 𝑒 can be written as [118]: 

𝐸(𝐿)(𝑒) = 𝐶𝐷|𝐼(𝑒) ∙ 𝑃(𝐷|𝐼) ∙ 𝑃(𝐼) + 𝐶𝐷̅|𝐼̅(𝑒) ∙ 𝑃(𝐷̅|𝐼)̅ ∙ 𝑃(𝐼)̅ + 𝐶𝐷̅|𝐼(𝑒)

∙ 𝑃(𝐷̅|𝐼) ∙ 𝑃(𝐼) + 𝐶𝐷|𝐼̅(𝑒) ∙ 𝑃(𝐷|𝐼)̅ ∙ 𝑃(𝐼)̅ + 𝐶𝑚(𝑒) 

 Eq. 21 

 

𝐶𝑚(𝑒) is the intrinsic design cost of the SHM strategy e. 𝑃(𝐷̅|𝐼)̅ is the probability of 

an undamaged structure giving no indication of damage, 𝑃(𝐷̅|𝐼) is the probability of 

an undamaged structure giving indication of damage, 𝑃(𝐷|𝐼) is the probability of a 

damaged structure giving indication of damage,  𝑃(𝐷|𝐼)̅  is the probability of a 
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damaged structure giving no indication of damage. Based on Bayes’ rule, 𝑃(𝐷̅|𝐼)̅ =
𝑃(𝐼̅|𝐷̅)∙𝑃(𝐷̅)

𝑃(𝐼̅)
 , the 𝐸(𝐿)(𝑒) can be written as: 

𝐸(𝐿)(𝑒) = 𝐶𝐷|𝐼(𝑒) ∙ 𝑃(𝐼|𝐷) ∙ 𝑃(𝐷) + 𝐶𝐷̅|𝐼̅(𝑒) ∙ 𝑃(𝐼|̅𝐷̅) ∙ 𝑃(𝐷̅) + 𝐶𝐷̅|𝐼(𝑒)

∙ 𝑃(𝐼|𝐷̅) ∙ 𝑃(𝐷̅) + 𝐶𝐷|𝐼̅(𝑒) ∙ 𝑃(𝐼|̅𝐷) ∙ 𝑃(𝐷) + 𝐶𝑚(𝑒) 

 Eq. 22 

 

As known from Section 2.3.1.1, 𝑃(𝐼|𝐷̅) is also known as the probability of false alarm 

(PFA), 𝑃(𝐼|𝐷)  is the probability of detecting damage (PoD),  𝑃(𝐷)  is the prior 

probability of the damage state, 𝐸(𝐿)(𝑒) can also be written as: 

𝐸(𝐿)(𝑒) = 𝐶𝐷|𝐼(𝑒) ∙ 𝑃𝑜𝐷 ∙ 𝑃(𝐷) + 𝐶𝐷̅|𝐼̅(𝑒) ∙ (1 − 𝑃𝐹𝐴) ∙ (1 − 𝑃(𝐷))

+ 𝐶𝐷̅|𝐼(𝑒) ∙ 𝑃𝐹𝐴 ∙ (1 − 𝑃(𝐷)) + 𝐶𝐷|𝐼̅(𝑒) ∙ (1 − 𝑃𝑜𝐷)

∙ 𝑃(𝐷) + 𝐶𝑚(𝑒) 

 Eq. 23 

 

The optimal Bayes risk for choosing the SHM strategy is to minimize 𝐸(𝐿)(𝑒). If the 

value of 𝐶𝐷|𝐼  and 𝐶𝐷̅|𝐼̅ are set to zero and 𝐶𝐷̅|𝐼 and 𝐶𝐷|𝐼̅ are set to 1.0, the value of 𝐸(𝐿) 

will be minimized by minimizing PFA [119]. 

 

2.4. STRUCTURAL PERFORMANCE AND UTILITY MODELLING 

As described in Section 2.2, in the process of calculating VoI, when a decision 

problem is formulated, the potential consequences and their cost and benefits analysis 

related to utility function 𝑢(𝑒, 𝑧, 𝑎, 𝜃) should be assessed and the probability of system 

states needs to be calculated. In Section 2.4, the details of structural performance and 

utility modelling will be described. 

2.4.1. STRUCTURAL SYSTEM RELIABILITY ANLAYSIS 

The probabilities of the structural states 𝑃[𝜽] can be calculated through Structural 

Reliability Analysis (SRA), which is built upon the reliability theory through the 

concepts of the limit state function and safety margin to compute the probability of 

failure or reliability index (see e.g. [120, 121]).  

It depends on two classes of factors whether a failure occurs in a structural model. 

These two classes are the external factor 𝑠 and the internal factor 𝑟, with 𝑠 describing 

loads and actions on the structure, 𝑟 on the other hand encompassing e.g., material 

properties and geometrical characteristics of components, corresponding structure 

resistances. Failure occurs when the load 𝑠  is greater than the resistance 𝑟 . 

Considering uncertainties, the load and resistance variables are both not deterministic, 
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which is described with the random variables 𝑆 and 𝑅. The probability of failure 𝑃(𝐹) 

can be defined as: 

𝑃(𝐹) = 𝑃(𝑅 ≤ 𝑆) = 𝑃(𝑅 − 𝑆 ≤ 0) = ∬ 𝑓𝑅𝑆(𝑟, 𝑠)

Ω𝐹𝑆

𝑑𝑟𝑑𝑠 

 Eq. 24 

 

Where 𝑓𝑅𝑆(𝑟, 𝑠) is the joint PDF of the random variables 𝑅 and 𝑆. The failure domain 

is denoted Ω𝐹𝑆 . However, both load and resistance are functions of a number of 

random variables, which are further grouped into a random vector 𝑋  for 

simplification. Thus, the load and resistance become 𝑆(𝑋) and 𝑅(𝑋).   

2.4.1.1 Limit state function 

For computation convenience, the structure performance is defined using a limit state 

function 𝑔(𝑋) or a safety margin 𝑀 in terms of load 𝑆(𝑋) and a resistance 𝑅(𝑋).   

𝑔(𝑋) = 𝑅(𝑋) − 𝑆(𝑋)  Eq. 25 

 

Then the limit state function can be divided into two regions depending on 𝑔(𝑋): 

failure domain, if 𝑔(𝑋) ≤ 0  and safe region, if 𝑔(𝑋) > 0 . Consequently, the 

probability of failure is determined on the failure domain Ω𝐹𝑆 = 𝑔(𝑋) ≤ 0 as: 

𝑃(𝐹) = 𝑃(𝑔(𝑋) ≤ 0) = 𝑃(𝑅(𝑋) − 𝑆(𝑋) ≤ 0)

= ∫ 𝑓𝑋

Ω𝐹𝑆

(𝑋) 𝑑𝑥1 … 𝑑𝑥𝑛  

 Eq. 26 

 

Where 𝑓𝑋(𝑋) is the joint PDF for all the random variables. Depending on the status 

of the structural behavior, the failure modes (limit states) include [122]: 

• Ultimate Limit States (ULS) 

ULS refers to the optimum potential of bearing load and consider the collapse of the 

whole structure, e.g., excessive plasticity, fatigue rupture and buckling. 

• Serviceability Limit States (SLS) 
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SLS are linked to regular use of the structure. When the structure approaches the SLS, 

it may not fulfill technological criteria for usage even though it might be robust 

enough to stay standing due to e.g., excessive deflections and local damage. 

2.4.1.2 Resistance and load distribution  

Normally the probabilistic models for loads and resistances are formulated based on 

a scientific mathematical and physical description or an empirical description based 

on observation. First, the uncertainties in the loading and resistance should be defined 

with random variables. Then a distribution type should be selected, and distribution 

parameters need to be determined. Finally, the validation of the distribution should be 

done. 

Choices of the distribution functions for extreme loads are e.g., the Gumbel 

distribution, which is recommended in JCSS [123], DS410 [124], EN1990 [125], 

ISO2394 [126] for extreme snow load and annual maximum wind pressure; Weibull 

distribution for significant wave heights for offshore structures design and analysis; 

and Generalized Pareto distribution for significant wave height on shallow water 

[127]. The widely used load distributions for fatigue analysis are Normal distribution, 

Lognormal distribution, and Weibull distribution, which are approximating the central 

part of the load variations distribution (stress ranges) well. 

The choice of distribution functions for material strengths (resistance) are e.g.  Normal 

distribution for ductile materials; Lognormal distribution, which is recommended in 

DS410 [124], Eurocodes [125] and ISO 2394 [126]; Weibull distribution for material 

strength which are significantly affected by the defect size in Eurocodes [125] and 

ISO 2394 [126]. 

The estimation of the statistical parameters in the load and resistance distribution 

functions can be obtained through the Maximum Likelihood method, the Moment 

method, the Least square method, or Bayesian statistics, etc. [122]. 

2.4.1.3 Deterioration model  

The resistance will decrease with the increase of deterioration. A generic time variant 

deterioration model 𝐷(𝑡) can be presented in terms of three parameters [149]: 

𝐷(𝑡) = 𝛼(𝑡 − 𝑇𝑖)
𝛽

 
 Eq. 27 

 

𝛼 is annual deterioration rate, β is the deterioration type, 𝑇𝑖  is the deterioration 

initiating time at time i. If a structure is under corrosion or under fatigue with a 

stationary stress process, it can be modeled as 𝛽 = 1; if a structure is under diffusion-
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controlled deterioration, then it can be modeled as 𝛽 = 0.5; if a concrete structure is 

deteriorated due to sulfate attack, it can be modeled as 𝛽 = 2.  

2.4.1.4 Uncertainty 

The system load 𝑆 is randomly varied in space and time and highly uncertainty. The 

resistance 𝑅 is decreasing in dependence of time due to deterioration, e.g., fatigue, 

cracking, aging, corrosion, mechanical properties, which is also uncertain. The 

uncertainties modeled by stochastic variables are allocated to four classes [122] 

(Noted that gross errors and human errors are not covered): 

• Physical uncertainty 

Physical uncertainty is associated with a number of the natural randomness, e.g., 

uncertainty due to variation in production variability. 

• Measurement uncertainty  

Measurement uncertainty is the uncertainty induced by inaccurate measurements, e.g., 

attributable to geometrical quantity. 

• Statistical uncertainty  

Statistical uncertainty is caused by the small sample size of the number of 

measurements. 

• Model uncertainty  

Model uncertainty is the uncertainty of choosing mathematical models due to 

imperfect knowledge, e.g., opting for stochastic variables for probability distribution 

types. 

2.4.1.5 Structural system reliability 

In practice system structures are formed from a combination of components. Utilizing 

the combination of individual failure modes of each failure element, the overall 

system reliability can be estimated. Depending on the type of logical systems, the 

structure can be modelled as series system (Figure 12 a), parallel system (Figure 12 

b) and mixed system (Figure 12 c). Each block diagram stands for one failure mode 

or component. 

A series system refers to a non-redundant system. If one component in a series system 

fails, the whole system will fail, e.g., a statically determinate (non-redundant) truss 

structure. Thus, the probability of failure of the series system with 𝑚 components is: 
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𝑃(𝐹𝑆) = 𝑃 (⋃{𝑔𝑖(𝑋) ≤ 0}

𝑚

𝑖=1

) = 𝑃 ( min
𝑖=1:𝑚

{𝑔𝑖(𝑋) ≤ 0}) 

 Eq. 28 

 

On the contrary, a parallel system is a redundant system. If all the components in the 

system fail, the parallel system will fail. Thus, the failure probability of a parallel 

system with 𝑛 components is: 

𝑃(𝐹𝑆) = 𝑃 (⋂{𝑔𝑗(𝑋) ≤ 0}

𝑛

𝑗=1

) = 𝑃 (max
𝑗=1:𝑛

{𝑔𝑗(𝑋) ≤ 0}) 

 Eq. 29 

 

The failure probability of a mixed system of 𝑚 series system with sub parallel system 

of 𝑛 components is: 

𝑃(𝐹𝑆) = 𝑃 (⋃ ⋂{𝑔𝑖,𝑗(𝑋) ≤ 0}

𝑛

𝑗=1

𝑚

𝑖=1

) 

 Eq. 30 

 

Moreover, the system reliability is not only dependent on the system types and the 

components’ reliability but also the number of components and their 

interdependencies. The system behaves as one component for full correlation of the 

component failures. In general, a parallel system’s reliability decreases with increased 

correlation. Conversely, a series system’s reliability increases as correlations increase.  

According to [128], increasing the number of components leads to a decreasing 

system reliability for an ideal series system but an increasing system reliability for an 

ideal parallel system and a ductile Daniels 9  system. The system reliability is 

approximately constant for a brittle Daniels system when increasing the number of 

components. 

The influence of structural performance parameters on the structural system reliability 

including correlation, deterioration rate, deterioration type and deterioration initial 

time have been further discussed in Chapter 3 (Paper 1). The computation results of 

system failure probability with varied deterioration types, varied deterioration rate and 

initial year as well as a repair plan with varied deterioration types have been presented.  

 
9 A Daniels system can be understood as logical parallel system considering the mechanical 

behavior.  
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Figure 12 Logical systems: (a) series system (b) parallel system (c) mixed system 

 

2.4.1.6 Computation methods 

The computation methods of calculating the failure probability include analytical 

methods, approximation methods and numerical methods. The analytical method is 

utilized when the limit state function 𝑔(𝑋) is a linear function or safety margin 𝑀 is 

normally distributed with mean 𝜇𝑀 and the standard deviation 𝜎𝑀 by introducing the 

reliability index 𝛽 =
𝜇𝑀

𝜎𝑀
 from Cornell [129]. The probability of failure is 𝑃(𝐹) =

Φ(−𝛽), the variable Φ represents the function of the standardized normal distribution. 

The approximation methods are applied when the limit state function is non-linear or 

the safety margin is not normally distributed, e.g., the First Order Reliability Method 

(FORM) by Hasofer & Lind [130] and Second Order Reliability Method (SORM). 

The difference between the FORM and SORM is that FORM deals with linearization 

of the safety margin, while SORM provides a second order (quadratic) approximation 

to the failure limit state function [122]. The estimation of the reliability index will 

start with the transformation of 𝑋  into a normalized stochastic variable 𝑈 . The 

shortest distance from the origin in the 𝑢 space to the failure surface is called Hasofer 

& Lind reliability index 𝛽𝐻𝐿, and the solution point for u is denoted u∗. 
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Figure 13 below shows the first and second order approximations of the failure surface 

from [122]. 

 

Figure 13 First and second order approximations of the failure surface [122] 

The numerical methods are simulation techniques, which is especially useful because 

there are many possible probable failure regions. Realizations 𝑥̂  of the stochastic 

variables 𝑋 are produced for each sample in simulation methods. For each realization 

𝑥̂, the failure function is determined and if the realization is in the failure zone, then a 

connection to the probability of failure is derived [122]. 

2.4.1.7 Monte Carlo simulation 

Monte Carlo Simulation (MSC) is one of the most widely used simulation techniques. 

It first generates a total number of 𝑁 realizations of the random variable 𝑋, for each 

realization 𝑥̂  the value of the limit state function 𝑔(𝑥̂ ) is evaluated, the realizations 

of the limit state function that are zero or negative 𝑔(𝑥̂ ) ≤ 0 are counted, then the 

failure probability is calculated as: 

𝑃(𝐹) =
∑ 𝐼[𝑔(𝑥̂𝑗)]𝑁

𝑗=1

𝑁
 

 Eq. 31 

 

𝐼[𝑔(𝑥̂ )] = {
0, 𝑖𝑓 𝑔(𝑥̂ ) > 0 
1, 𝑖𝑓 𝑔(𝑥̂ ) ≤ 0 

 
 Eq. 32 

 

The standard deviation of the MCS error equals the square root of the probability of 

failure divided by the sample size. Therefore, the precision of MCS is highly 

dependent on the number of samples. 



 

57 

𝜎𝑀𝐶𝑆 ≈ √
𝑃(𝐹)

𝑁
 

 Eq. 33 

 

If it is only focused on the sampling in the overall sample space region having the 

highest impact on the probability of failure by introducing sample vectors 𝑦̂𝑖 

generated from the sampling density function 𝑓𝑠(𝑦) , it is called Monte Carlo 

importance sampling. The advantage of the Monte Carlo importance sampling is that 

the standard error of estimate 𝑃(𝐹) can be greatly reduced. 

. 

𝑃(𝐹) =
∑ 𝐼[𝑔(𝑦̂𝑖)]𝑁

𝑖=1

𝑁
∙

𝑓𝑥(𝑦̂𝑖)

𝑓𝑠(𝑦̂𝑖)
 

 Eq. 34 

 

Besides, there are many more methods: Response Surfaces, Importance Sampling 

Methods for Monte Carlo Simulations, Asymptotic Sampling, Subspace Sampling, 

Adaptive Sampling [122]. 

2.4.1.8 Software packages 

Due to the computation challenges to get very small probabilities of failure for 

complex systems containing various components/limit states, different software 

packages are built to help reliability analysis, e.g. FERUM (Finite Element Reliability 

Using MATLAB) 10  developed by University of California, Berkeley, STRUREL 

(Structural Reliability Analysis Program System), which is windows based and 

contains Statrel 11 , Comrel 12  and Sysrel 13 , UQLab 14  (Uncertainty Quantification 

framework) developed by ETH Zurich and SARA (Structural Analysis and Reliability 

 
10FERUM: https://www.sigma-clermont.fr/en/ferum  

11Comrel: http://www.strurel.de/. 

12Statrel: http://www.strurel.de/strurel.html#collapseFive. 

13 Sysrel: http://www.strurel.de/strurel.html#collapseFour. 

14UQLab: https://www.uqlab.com/. 

https://www.sigma-clermont.fr/en/ferum
http://www.strurel.de/
http://www.strurel.de/strurel.html#collapseFive
http://www.strurel.de/strurel.html#collapseFour
https://www.uqlab.com/
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Assessment) by Cervenka Consulting which contains ATENA15 and FReET16 and et 

al. 

2.4.2. UTILITY MODELLING 

The utility modelling for a lifecycle integrity management analysis is similar to the 

lifecycle costs analysis [140] which considers both lifetime benefits and costs, while 

the lifecycle costs analysis only considers the total costs during service life. The 

lifecycle of an infrastructure project includes the production of raw materials; 

refining, assembling, and manufacturing (construction); usage and operation; and 

recycling or recovery after end of life. The lifecycle cost is the total discounted cost 

over the whole service life, from the planning stage to the end of the lifetime of a 

structure. This includes construction, operation, maintenance, decommission and 

recycling costs. 

2.4.2.1 Generic formulation 

The lifecycle utility formulation 𝑈𝑆𝐿  is derived from utility theory and Bayesian 

decision analysis, which follows the lifecycle integrity management decision process 

as shown in Figure 14, encompassing the following groups: 

• Expected benefit 𝑈𝐵 

• Design and construction expenses related initial costs 𝐶𝑜 

• Expected running costs like expected operations and maintenance costs, e.g., 

expected inspections costs 𝑈𝐼 , expected monitoring costs 𝑈𝑀 , expected 

repair costs 𝑈𝑅 and expected failure costs 𝑈𝐹 

• End-of-life costs 𝐶𝐸, e.g., disposal, recycle costs.  

 
15ATENA: https://www.cervenka.cz/products/atena/. 

16FReET: https://www.cervenka.cz/products/sara/. 

https://www.cervenka.cz/products/atena/
https://www.cervenka.cz/products/sara/
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Figure 14 Lifecycle integrity management decision process based on [131]  

The decisions on the operation and maintenance are determined by the physical 

performance of the system. A discounting rate of money 𝛾 is considered owing to the 

changing time value of capital. So that the life-cycle utility 𝑈𝑆𝐿 can be modelled as: 

𝑈𝑆𝐿 = 𝑈𝐵 − 𝑈𝐹 − 𝑈𝑅 − 𝑈𝐼 − 𝑈𝑀 − 𝐶𝑜 − 𝐶𝐸   Eq. 35 

𝑈𝐵 = ∑ 𝐵(𝑡) ∙

𝑇𝑆𝐿

𝑡=1

(1 − 𝑃(𝐹𝑡)) ∙
1

(1 + 𝛾)𝑡
 

 Eq. 36 

 

𝐵(𝑡) is the annual benefit at year 𝑡, 𝑃(𝐹𝑡) is the probability of failure at year 𝑡. The 

expected benefit 𝑈𝐵 is the sum of discounted annual benefit conditioned on survival 

during service life 𝑇𝑆𝐿 . The expected failure cost 𝑈𝐹 is calculated as: 

𝑈𝐹 = ∑ 𝐶𝐹(𝑡) ∙ (𝑃(𝐹𝑡) − 𝑃(𝐹𝑡−1)) ∙

𝑇𝑆𝐿

𝑡=1

1

(1 + 𝛾)𝑡
 

 Eq. 37 

 

𝐶𝐹(𝑡) is the cost of failure at year 𝑡 considering the direct and indirect losses, e.g. loss 

of life, economic, social and environmental impact. 𝑃(𝐹𝑡) − 𝑃(𝐹𝑡−1) is the annual 

probability of failure. The expected failure cost 𝑈𝐹 is the sum of discounted annual 

probability of failure times the cost of failure. The expected repair costs 𝑈𝑅 follows: 

𝑈𝑅 = ∑ 𝐶𝑅(𝑇𝑖) ∙ 𝑃(𝑅𝑇𝑖
) ∙ (1 − 𝑃(𝐹𝑇𝑖

)) ∙

𝑁𝑅

𝑖=1

1

(1 + 𝛾)𝑇𝑖
 

 Eq. 38 
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𝐶𝑅(𝑇𝑖) is the cost of repair at repair year 𝑇𝑖 , 𝑃(𝑅𝑇𝑖
) is the probability of repair at 

repair year 𝑇𝑖 , 𝑖 is the number of repair times, 𝑁𝑅 is the total number of repairs. The 

expected repair cost 𝑈𝑅  is the sum of repair costs times the probability of repair 

conditioned on survival and discounted on the year of repair. The expected inspection 

costs 𝑈𝐼 and expected monitoring costs 𝑈𝑀 are: 

𝑈𝐼 = ∑ 𝐶𝐼(𝑇𝑗) ∙

𝑁𝐼

𝑗=1

(1 − 𝑃 (𝐹𝑇𝑗
)) ∙

1

(1 + 𝛾)𝑇𝑗
 

 Eq. 39 

𝑈𝑀 = ∑ 𝐶𝑀(𝑇𝑚) ∙

𝑁𝑀

𝑚=1

(1 − 𝑃(𝐹𝑇𝑚
)) ∙

1

(1 + 𝛾)𝑇𝑚
 

 Eq. 40 

 

𝐶𝐼 (𝑇𝑗) is the cost of inspection at inspection year 𝑇𝑗, 𝑗 is number of inspection times 

and 𝑁𝐼  is the total number of inspections. 𝐶𝑀  (𝑇𝑚)  is the cost of monitoring at 

monitoring year 𝑇𝑚, 𝑚  is the number of monitoring times and 𝑁𝑀 is the total number 

of monitoring. The expected inspection cost 𝑈𝐼 or expected monitoring cost 𝑈𝑀 is the 

sum of inspection/monitoring costs times the probability of survival discounted on the 

year of inspection/monitoring, respectively.  

The influence of the parameters mentioned above on utility modelling can be further 

found in chapter 4 (Paper 2) and chapter 6 (Paper 4). Chapter 4 implemented a 

parametric analysis of the utilities on different monitoring durations and and choices 

of service life extension on welds of a steel bridge deck, considering the changes of 

the target probability 𝑃𝑇𝑎𝑟𝑔𝑒𝑡 , benefit 𝐵 , failure cost 𝐶𝐹 , reahbilitation cost 𝐶𝑅 , 

monitoring cost 𝐶𝑀 and discount rate 𝛾. Chapter 6 performed a parametric analysis on 

CVSI of strain and meteo-oceanographic monitoring for offshore wind turbines 

support structures with respect to cost of failure 𝐶𝐹, inspection cost 𝐶𝐼, repair cost 𝐶𝑅 

and discounting rate 𝑟. 

It is noted that the probability of failure of the structure needs to be updated after 

inspection, monitoring, and repair with obtained information so that the lifecycle 

utility should be computed carefully. The optimization of operation and maintenance 

planning is to maximize the lifecycle utility 𝑈𝑆𝐿 through optimizing the year and total 

number of monitoring, inspections, and repairs to minimize the risk and costs.  

2.4.2.2 Discounting rate  

The discount rate is often related to the interest rate or the social discount rate (SDR), 

which represents the current value of costs and benefits that will be obtained in the 

future. The main approaches for evaluation of the discount rate are: 

• Social Rate of Time Preference (SRTP) 
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The SRTP is a measure of the willingness of a society to save the present consumption 

for more future consumption. It builds the discounting rate taking pure time 

consumption and economic growth into account [132].  

𝛾 = 𝜌 + 𝜃𝜂  Eq. 41 

𝜌 is the factor related to the pure time preference considering individuals’ impatience 

or myopia as well as the risk of death or human race extinction, 𝜃  is a constant 

considering the consumption elasticity of marginal utility, 𝜂 is the annual growth rate 

per capita real consumption. 

• Social Opportunity Cost of capital (SOC) 

The SOC solution is derived from the premise that resources are still limited, 

government and private sector have equal right to compete for the same funds with 

same return rate on the investment. The SOC is suggested to be similar to the marginal 

pretax return rate on private investments with no risk [133]. 

• Weighted average approach  

The SRTP approach of discounting future potential costs and benefits is controversial 

because it does not recognize the effects of public projects on available funds for 

private investment assets. The SOC approach implies that public investment just 

replaces private investment rather than private consumption, which is not necessarily 

valid. To align the SRTP approach with SOC, Harberger et al. [134] suggest the 

weighted average approach: 

𝛾 = 𝛼𝑆𝑂𝐶 + (1 − 𝛼 − 𝛽)𝑖𝑓 + 𝛽𝑆𝑅𝑇𝑃  Eq. 42 

𝑖𝑓 is the actual long-term foreign borrowing rate from the government, 𝛼 is ratio of 

funds for the public investment received at the costs of private investment, 𝛽 is the 

ratio of founds collected at the expense of present consumption, and (1 − 𝛼 − 𝛽) is 

the ratio of funds from foreign loans. 𝑆𝑂𝐶 and 𝑆𝑅𝑇𝑃 are measured discounting rates 

from the SOC and SRTP approach, respectively.  

The selection of the discount rate varies across the world depending on the 

development level of different countries. Normally in developed countries the rates 

are lower (3%-7%) than in the developing countries (8%-15%). However, there is no 

specific rule to select a fixed value of discount rate.  

The social discount rate in some selected countries is shown in Table 10. Countries 

vary in economic structure resource shortage, financial growth level, financial 

intermediation performance, impediments to entry into the foreign capital market, and 

social time choice, resulting in a specific social discount rate factor. A wider debate 

on the strategies of selecting discounting rates can be found in [135].  
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Table 10 Social discount rates in selected countries from [135] 

Country Discount rate  Theoretical Basis 

Australia Annually reviewed; 8% 

(1991) 

SOC approach 

Canada 10% SOC approach 

People’s Republic of 

China  

8% for short- and medium-

term projects; <8% for long-

term projects 

Weighted average 

approach 

France  8% (1985); 4% (2005) 1985: to keep a balance 

between public and private 

sector investment. 2005: 

SRTP approach 

Germany 4% (1999), 3% (2004) Based on federal 

refinancing rate 

India 12% SOC approach 

Italy 5% SRTP approach 

New Zealand 10% SOC approach 

Norway 7% (1978);3.5% (1998) Government borrowing 

rate in real terms 

Pakistan 12% SOC approach 

Philippines 15% SOC approach 

Spain 6% (transport sector); 4% 

(water sector) 

SRTP approach 

United Kingdom 8% (1967);10% (1969); 5% 

(1978); 6% (1989); 3.5% 

(2003); < 3.5% for long-term 

projects over 30 years 

Soc approach until early 

1980s; thereafter SRTP 

approach 
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US 10% (before 1992); 7% 

(after 1992) from Office of 

management and budget 

SOC approach 

2-3% for environmental 

projects from Environmental 

protection Agency 

SRTP approach 

 

The influence of the discounting rate on the utility modelling can be further found in 

Chapter 4 (Paper 2). With increasing discounting rate, the utilities will decrease, as 

shown in Figure 15. The discounting rate represents the economic situation of the 

country. When the discounting rate is high, money will lose its value fast with time. 

So, for a long-term investment project it is important to consider the discounting rate 

for the whole duration of the investment. Because the utilities may be negative when 

the discounting rate is high if it changes over time. 

 

Figure 15 The influence of discounting rate on the utilities modelling. Adapt from [150]. 

2.4.2.3 Cost of Loss human lives 

The failure consequences of civil infrastructures may lead to fatality, injury, economic 

loss, social and environmental impact, e.g., collapses of a highway bridge. Three 

methods to find the economic effects of loss of life are:  

• Life Quality Index (LQI) 
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The LQI is a composite socioeconomic indicator of human welfare established by 

Nathwani et al. [136] as a supportive framework to enhance the decision basis for 

events that have impact on public health and safety. The LQI may be viewed as a 

utility function composed of:  𝑒(𝑎) life expectancy at age 𝑎, 𝑔 the real gross domestic 

product per person and 𝑞 trade off factor regards the expected healthy life span to 

enjoy the available resources [137]. 

𝐿(𝑎) = 𝑔𝑞𝑒(𝑎)  Eq. 43 

• Societal Willingness to Pay (SWTP) 

The SWTP can be interpreted as the societies willingness to invest, e.g., to reduce 

risk, which is developed by Rackwitz [138]. The way to measure 𝑆𝑊𝑇𝑃  is to 

differentiate 𝐿(𝑎) to offset the shift in life expectancy and the resulting expenditure 

to keep the LQI constant. 

𝑆𝑊𝑇𝑃 = 𝑑𝑔 = −Ε [
𝑔

𝑞

𝑑𝑒𝑑(𝑎)

𝑒𝑑(𝑎)
] ≈ 𝐺𝑥𝑑𝑚 

 Eq. 44 

 

For a particular intervention, the constant 𝐺𝑥 is depending on the mortality reduction 

scheme 𝑥 .  𝑑𝑚 =
𝑑𝑒(𝑎)

𝑒(𝑎)
 is the mortality elimination. In [139] the authors show an 

overlook of different mortality regimes. The SWTP for countries having different 

socioeconomical conditions has been compiled by [140]. 

• Social Value of Statistical Life (SVSL) 

According to Pandey and Nathwani [141], the SWTP can be supplemented by the 

statistical value of societal life (SVSL). The difference between SVSL and SWTP is 

that the SVSL refers to the amount to be paid to compensate for each fatality, 

independent of the age, while the SWTP is the amount that the government is willing 

to allocate towards the mortality reduction even if the change in life expectancy 

caused by the safety measures is very low. 

𝑆𝑉𝑆𝐿 = −Ε [
𝑔

𝑞

𝑑𝑒𝑑(𝑎)

𝑒𝑑(𝑎)
] ≈ −

𝑔

𝑞
𝑒̅𝑑 

 Eq. 45 

 

𝑒̅𝑑 is the discounted life expectancy. The SVSL can be interpreted as the amount of 

money which the society is willing to spend to ensure the safety of an anonymous 

citizen [142], especially when it is exposed to problems caused by environmental 

risks. The SVSL for a number of countries having different discount rates can be 

found in [140]. 
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Determination of structural and
damage detection system influencing
parameters on the value of
information

Lijia Long1,2 , Michael Döhler3 and Sebastian Thöns1,4

Abstract
A method to determine the influencing parameters of a structural and damage detection system is proposed based on
the value of information analysis. The value of information analysis utilizes the Bayesian pre-posterior decision theory to
quantify the value of damage detection system for the structural integrity management during service life. First, the influ-
encing parameters of the structural system, such as deterioration type and rate are introduced for the performance of
the prior probabilistic system model. Then the influencing parameters on the damage detection system performance,
including number of sensors, sensor locations, measurement noise, and the Type-I error are investigated. The pre-
posterior probabilistic model is computed utilizing the Bayes’ theorem to update the prior system model with the
damage indication information. Finally, the value of damage detection system is quantified as the difference between the
maximum utility obtained in pre-posterior and prior analysis based on the decision tree analysis, comprising structural
probabilistic models, consequences, as well as benefit and costs analysis associated with and without monitoring. With
the developed approach, a case study on a statically determinate Pratt truss bridge girder is carried out to validate the
method. The analysis shows that the deterioration rate is the most sensitive parameter on the effect of relative value of
information over the whole service life. Furthermore, it shows that more sensors do not necessarily lead to a higher
relative value of information; only specific sensor locations near the highest utilized components lead to a high relative
value of information; measurement noise and the Type-I error should be controlled and be as small as possible. An opti-
mal sensor employment with highest relative value of information is found. Moreover, it is found that the proposed
method can be a powerful tool to develop optimal service life maintenance strategies—before implementation—for sim-
ilar bridges and to optimize the damage detection system settings and sensor configuration for minimum expected costs
and risks.

Keywords
Damage detection systems, value of information, deteriorating structures, probability of damage indication, decision
theory

Introduction

It is well known that structural health monitoring
(SHM) can be beneficial for structural performance
assessment over time.1 Substantial research has been
devoted to the development of SHM strategies and
measurement techniques to reduce the various uncer-
tainties associated with structural characteristics and
performances. SHM results have been utilized for
structural reliability assessments in various fields of engi-
neering,2–5 which comprise the utilization of monitoring
data for reliability-based inspection planning, updating
models, and the assessment of the monitoring uncer-
tainty. However, only very recently, it is acknowledged

that the benefits of SHM in a life-cycle perspective prior
to its implementation can be properly quantified by
using the value of information (VoI) theory.6
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Decision-makers, such as infrastructure owners and
operators, are often bothered with questions7,8 like
whether it is beneficial to perform an SHM experiment
considering the economical aspect, and if so, when the
SHM experiment should be implemented? How to
design a monitoring and maintenance plan accordingly
with different deterioration types and rates in different
environment? How many sensors should be chosen?
Where to install the sensors? When the benefit is not
clearly specified, it is usually hard to convince the
decision-makers to invest in SHM of large systems,
since inappropriate SHM strategies may trigger unne-
cessary or inappropriate remedial activities, which may
lead to a loss of economical and human resources.
Most often, the value of SHM is only implicitly
assumed. Decision-makers would like to utilize experi-
ence as a basis for identifying efficient strategies for
performance monitoring without considering how the
information shall be utilized for improving the decision
basis for optimal life-cycle management of the
structures.

To overcome this issue, there is a need to establish a
better understanding of the quantification of the value of
SHM before its implementation. Early approaches for the
assessment of the value of SHM information have been
developed from 2011 onwards.4,9–11 Further focused
research efforts of many authors, also within the
European Union–funded COST Action TU1402
(www.cost-tu1402.eu), resulted in comprehensive studies
of many aspects for the quantification of the value of
SHM.6,12–24 These aspects include the quantification of
the value of deterioration monitoring18,25,26 and the quan-
tification of the value of multiple SHM information.26,27

This article addresses the quantification of the value
of damage detection system (DDS) information consti-
tuting an important part of the SHM research field.
The quantification of the value of DDS information is
parameterized to identify the optimal DDS configura-
tion, the optimal DDS employment on a structural sys-
tem, and the structural system characteristics for which
DDS information provides the highest value. In this
way, the authors aim at decision support for the
employment of DDS by jointly analyzing the DDS sys-
tem performance, the structural system performance
and the associated benefits, costs, and consequences.
The paper documents a 3-year research progress within
the European Union–funded Marie Sk1odowska–Curie
Innovative Training Network project INFRASTAR
(www.infrastar.eu) in conjunction with the findings of
the COST Action TU1402. The novelty of this article
encompasses:

1. A comprehensive and consistent formulation and
elaboration of the Bayesian pre-posterior decision
scenario model and its analysis.

2. A comprehensive and consistent analysis and para-
metric study of the value of DDS information in
dependency of the DDS characteristics and struc-
tural system deterioration characteristics through-
out the service life.

3. A detailed and comprehensive analysis of DDS
characteristics.

This article starts with introducing the VoI theory in
section ‘‘VoI theory.’’ Then the influencing parameters
of the structural system such as deterioration type,
deterioration rate, and deterioration initialing year for
the performance of a prior probabilistic system model
are discussed in section ‘‘Structural probabilistic system
performance.’’ The DDS performance influencing para-
meters including number of sensors, sensor locations,
measurement noise, and the Type-I error are presented
in section ‘‘DDS information.’’ The integrity manage-
ment actions are discussed in section ‘‘Integrity man-
agement actions.’’ The pre-posterior probabilistic
model which is computed utilizing Bayes’ theorem to
update the prior system model with the damage indica-
tion information is described in section ‘‘Pre-posterior
updating with DDS information.’’ The utility modeling
method is presented in section ‘‘Utility modelling and
analysis.’’ With the developed approach, a case study
on a statically determinate Pratt truss bridge girder is
investigated to validate the method in section ‘‘Generic
parametric analysis of the value of DDS information.’’
The results are discussed in section ‘‘Discussion.’’ This
article ends with conclusion in section ‘‘Conclusion.’’

Methodology

VoI theory

The VoI theory has been developed by Raiffa and
Schlaifer.28 The VoI analysis is rooted in the Bayesian
definition of probability and utility-based decision the-
ory to quantify the expected value of the utility increase
related to yet unknown information.

The decision problems in the context of SHM for the
life-cycle management of structures are illustrated in
Figure 1. The essential decisions relate to whether imple-
ment SHM or not, when, at which locations and for
which structural conditions to perform SHM. For dif-
ferent structures, different life-cycle phases may be con-
sidered in the decision analysis. For new structures,
engineers need to think whether to integrate SHM into
design or construction phases. While for existing struc-
tures, decisions about implementing SHM will be con-
sidered during the operation and maintenance phase
and toward the end-of-service life. To figure out the
decision of implementing SHM, further questions arise
like: When should the SHM system been installed?
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Where to install the sensors? How many sensors to
install? How to set measurement parameters? and
Whether to extend service life? These questions can be
answered with the utilization of the Bayesian decision
and VoI analyses and an optimization of the expected
benefits, the risk and the expected costs. By performing
SHM, information about the states of the structural sys-
tem are obtained, which will improve the state models.
Actions such as repair and maintenance for example,
based on the information acquired by SHM strategies
like damage detection, change the physical properties
and performance of the structural system. Both, the
parameters of the SHM and the repair and maintenance
strategies influence the expected benefits, costs, and the
risk and in this way lead to different VoI.

The classic format of a decision analysis relating to
experiments—or SHM—is shown in Figure 2, building
upon the framework of Bayesian decision theory.28 The
decision-maker wishes to select a single action a from the

domain A= fa1, . . . , amg of potential actions; the conse-
quences of adopting the terminal action a depend on the
state of the system, which cannot be predicted with cer-
tainty. Each potential state will be labeled by a u with
the domain u = fu1, . . . , umg. To obtain further informa-
tion on the importance of each state u, a single experi-
ment or SHM strategy e from a family E= fe1, . . . , emg
of potential SHM strategies should be selected. Each
potential outcome of an SHM experiment e will be
labeled by a z with domain Z= fz1, . . . , zmg. The
decision-maker assigns a utility u(e, z, a, u) to perform a
particular e, observing a particular z, taking a particular
action a, and then obtaining a particular u. The evalua-
tion u takes into account of the costs (monetary and
other) of SHM and the consequences (monetary and
other) of the terminal action as well as the system states.

The VoI can be found as the difference between the
maximum expected value of the utility obtained in pre-
posterior analysis and the maximum value of the utility

Figure 1. Decision problems in the context of SHM through life-cycle management of structures.

Figure 2. The classic format of decision tree23 regards SHM.
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obtained using only prior information, shown in equa-
tion (1). This means that a value to information is
assigned as expected utility gain caused by the optimal
decisions regarding information acquirement and
actions with and without that information relative to
the costs of collecting the information

VoIe = max
e

EZje max
a

EujZ u e, Z, a, uð Þ½ �
� �

�max
a

Eu u a, uð Þ½ �

ð1Þ

The VoI can be normalized in relation to the prior
utility resulting in the relative VoI (VoIe)

VoIe =
VoIe

max
a

Eu u a, uð Þ½ �
��� ��� ð2Þ

In this way, the identification of optimal SHM stra-
tegies is facilitated for both new and existing structures
under a range of operating conditions and constraints.
If the cost of this information is small in comparison to
the potential benefit of the information, the experiment
should be performed. If several different types of
experiments are possible, the decision-maker must
choose the experiment resulting the overall largest
expected value of utility.29 The pre-posterior Bayesian
decision analysis is utilized to model and to assess the
expected value of the utility relating to yet unknown
information, which can be modeled and forecasted
using the prior system-state models.

Structural probabilistic system performance

For any structural model, failure occurs when the
external load S exceeds the internal resistance (material
strength) R due to increase of damage and degradation.
Considering the resistance model uncertainty MR

and the loading model uncertainty Ms, the failure prob-
ability P(FS) of a series system with nj parallel subsys-
tems consisting of ni components can be written as
equation (3)

P FSð Þ= P
[nj

j = 1

\ni

i = 1

MR, i, jRi, j tð Þ �MS, i, jSi, j

� �
<0

 !
ð3Þ

Ri, j(t) is the time-variant resistance for a component,
and Si, j is the external loading on the component. The
resistance (strength) will be degraded due to the
increase of damage with time

Ri, j tð Þ= Ri, j, 0 Di, j � Di, j tð Þ
� �

ð4Þ

Ri, j, 0 is the initial resistance, and Di, j is the damage
limit of the component. Di, j(t) is the damage on a

component, which will be increasing with time. A gen-
eral damage model is introduced by Mori and
Ellingwood30

Di, j tð Þ= a(t � T0)b ð5Þ

where a is the annual deterioration rate of a compo-
nent, b is the deterioration type, and T0 is the deteriora-
tion initiating time. For b = 1, this corresponds to the
most applied corrosion models and to the Palmgren–
Miner fatigue model with a stationary stress process;
for b = 0.5, the model is representative of diffusion-
controlled deterioration; and for b = 2, the model
approximates concrete deterioration caused by sulfate
attack.

To calculate the probability of failure, a limit state
function is introduced, when gi, j<0 represents the com-
ponent failure due to deterioration

gi, j = MR, i, jRi, j, 0 Di, j � a(t � T0)b
� �

�MS, i, jSi, j tð Þ ð6Þ

It is noted that for many structural systems,
deterioration states of structural components are
correlated.31 Therefore, the correlation of the deteriora-
tion states should be accounted for. The deterioration
process follows equation (4). Stochastic dependence
can then be modeled32 by introducing a correlation
among the damage limit state, or among the para-
meters of the models describing the damage limit, for
example, deterioration rate a. The component failures
caused by deterioration are likely to occur at different
times depending on the nature of the deterioration pro-
cess, which will show a lower statistical dependence
than the failure events caused by overloading as all
components normally fail during the same load event.
The correlation coefficient for limit states of overload-
ing failure is thus close to 1.0,31 and the correlation
coefficient of deterioration states among components is
normally estimated less than 1.0.

DDS information

SHM consists of a very wide range of activities, which
should provide information of relevance for the man-
agement of existing and new structures for their
life-cycle performance. SHM systems are designed to
provide owners and operators with information about
the health of a structure. A main issue of SHM is to
develop approaches for damage diagnosis, involving
for example, signal processing methods for model iden-
tification and feature extraction.33–35

An approach encompassing DDS and algorithms,
which is used to evaluate the structural system perfor-
mance with DDS information has been developed by
Thöns.36 The employed damage detection method,
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which is the stochastic subspace damage detection
(SSDD) method,37 detects changes in the dynamic
properties of a structure, for example, due to stiffness
loss, from output-only ambient vibration measure-
ments in a (healthy) reference state and in the current
state. From these measurements, a test statistic is com-
puted that compares both states. This results in a chi-
square–distributed damage indicator, having a central
chi-square distribution in the reference state and a non-
central chi-square distribution in the damaged state. A
threshold is set up for a desired Type-I error for a deci-
sion between both states.

The non-centrality parameter of the distribution in
the damaged state can be obtained easily from mea-
surements of the structure in the reference state and
from model-based information on the damage within
the theoretical framework of the method.38 This allows
in particular an efficient model-based computation of
the probability of indication for any damage, without
the need of recording or simulating data from the dam-
aged structure.39

In general, the performance of the DDS depends on
the following properties:

1. Properties of the measurement system, like number
and positions of sensors, type of sensors, sampling
frequency fs, and measurement duration. These
properties are typically set up by the user.

2. Stochastic system properties, like ambient excita-
tion properties and the measurement noise level.
These properties are not or only partially controlled
by the user.

Besides these properties, the performance of the
DDS strongly depends on the chosen damage detection
method and its setup. This includes in particular the
desired Type-I error for the indication threshold
between healthy and damaged states, which also needs
to be set for the SSDD method.

Note that the considered damage detection method
is used as an example in this study, and any damage
detection method can be used in our VoI framework if
it can provide the probability of indication for the dam-
ages included in the employed deterioration model.

Integrity management actions

Integrity management actions are the possible actions
that the decision-maker can take during the service life
of a structure to ensure safety and functionality, for
example, maintenance, inspection, repair, and replace.
The decision of theoretical optimal choice of integrity
management actions can be derived in the form of deci-
sion rules, which relate an experimental outcome to an
action. Decision rules can—once they are derived—

enhance significantly the computational efficiency.
Examples of decision rules are:40

� If the monitoring outcome is above the threshold
value, an inspection is made.

� If the inspection outcome is above a threshold
value, a repair is made.

� If the expected value of damage size is above a
threshold value, an inspection or repair is made.

Pre-posterior updating with DDS information

Let D denote the damage size of a structural system or
component, which is the vector of degradation consist-
ing of random variables of Di, j from equation (5).
fD(D) denotes the probability density function of D.
Considering that a DDS is used to inspect a structure
or structural component, the quality of the measure-
ment can be represented by the probability density
function for indication, given a damage size r(I jD). It
can then be used to calculate the probability of indicat-
ing the damage with size D. The probability of indica-
tion of detecting damage is then given as

P Ið Þ=

ð
OD

r I jDð ÞfD Dð ÞdD ð7Þ

as referenced by Hong.41 OD represents the domain of
D. Since the value of r(I jD) ranges from 0 to 1, to com-
pute equation (7), a uniformly distributed random vari-
able m can be introduced to form a limit-state function.
The probability of no indication of detecting damage
P(�I) can be calculated by integrating in the region
which is defined using the limit-state function gU <0.
The limit-state function gU is defined as the difference
between the probability of indication given damage
P(I jD) and m

P �Ið Þ= 1� P Ið Þ=

ð
OD

1� r I jDð Þð ÞfD Dð ÞdD ð8Þ

gU = P I jDð Þ � m ð9Þ

The pre-posterior probability of failure if no damage
is detected P(FsjD \ �I) can be written as equation (10)
and solved by two joint limit-state functions of gS

and gU

P FsjD \ �Ið Þ= P FsjD,�Ið ÞP �Ið Þ = P gS<0 \ gU <0ð Þ ð10Þ

where P(�I) is the probability of no indication,
P(�I jFs,D) is the probability of no indication given
damage and failure. The limit-state function gS<0 can
refer to equation (6).

Long et al. 5



Utility modeling and analysis

Let u be the utility function considering the costs and
benefits. The total costs are the sum of individual costs,
for example, cost of consequences like failure, cost of
actions like inspection, repair, and replacement, costs
of monitoring. The failure costs should include both
direct and indirect costs regarding fatalities, economic,
environmental, and social impact. The monitoring costs
include investment, installation, operation, and moni-
toring system replacement costs. While some individual
costs like monitoring costs can be estimated referencing
similar cases from literatures and standards, repair
costs should be modeled carefully considering the dam-
age status of the structure.

Data from damaged buildings suggest that the repair
costs are dependent on the overall damage state,42–44

the more overall damage is present in a structure, the
higher are the repair costs for restoring the structure to
the original state. The repair costs dependency on the
damage state is modeled in most case, either as a
linear function with a limit of repairable damage,42,43

or as a non-linearly increasing function of damage.45 In
the article, the cost of repair is modeled as a non-
linearly increasing function of damage, dependent on
the initial investment cost of the bridge CI , the service
life TSL and the repair year tj following Higuchi,46

yielding

CR =
CI

TSL + 2� tj

ð11Þ

The repair action is performed when the probability
of failure exceeds the target probability PTarget, which
serves as a boundary to the decision analysis. The utility
analysis will be formulated following the decision tree
analysis.

The utility can be analyzed depending on the state
of information acquirement at the time of the analysis.
There are two types of analysis28 named extensive form
and normal form to compute the utility. In this article,
the extensive form analysis is applied. If the probabil-
ities of the various system states corresponding to dif-
ferent consequences of action have been estimated,
which means that information on action a and state u
are given. Assume u in total has m states, the expected
utility of action ai can be calculated by

Eu u ai, uð Þ½ �=
Xm

j = 1

u ai, uj

� �
P uj

� �
ð12Þ

P(uj) is the assigned prior probability at state uj.
After calculating all the expected utilities corresponding
to the different actions, the optimal action will result in
the one with highest expected utility, which is called
prior utility U

U = max
a

Eu u a, uð Þ½ � ð13Þ

If additional information becomes available, which
means that a specific SHM experiment e has been
implemented and a specific outcome of the experiment
z is known. The expected utility is modeling by

Eujz u z, ai, uð Þ½ �=
Xm

j = 1

u z, ai, uj

� �
P ujjz
� �

ð14Þ

P(ujjz) is the posterior probability, given the out-
come of z, which is updated by Bayles’s rule. The maxi-
mum utility in this case is called posterior utility. When
the SHM strategy or the experiment is planned but the
result is still unknown, then the expected utility is mod-
eled with forecasted information based on the prior
models. The SHM experiment e and the probability of
each of the l outcomes of the experiment z will be
assigned. The expected values of the utility should be
found for each possible action a for a specific experi-
ment e and outcome z. The maximum utility is called
pre-posterior utility U�, which is calculated by

U� = max
e

EZje max
a

EujZ u e,Z, a, uð Þ½ �
� �

ð15Þ

EZje max
a

EujZ u e,Z, a, uð Þ½ �
� �

= max
a

Xl

k = 1

Xm

j = 1

u e, z, a, uj

� �
P ujjzk

� �
P zk , eið Þ

ð16Þ

P(zk , ei) is the probability of outcome zk from experi-
ment of ei. P(ujjzk)P(zk , ei) is the pre-posterior probabil-
ity, which can be modeled as P(uj \ zk).

Generic parametric analysis of the value of
DDS information

The parametric analysis of the value of DDS informa-
tion takes basis in a generic structural system under
degradation. The generic and representative structural
system constitutes a series system accounting for the
dependence in the component failure modes and in the
deterioration of the individual structural components.
Such system is representative, as it takes basis in com-
mon assumptions for target reliability determination
and code calibration.47,48 The complete decision sce-
nario encompassing the decision-maker, the decision
point time, the temporal framing of the decision analy-
sis, the specific structural system and component failure
and deterioration models and their dependencies, the
specific DDS information, and the utility models are
introduced in the following sections.
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Decision scenario

A Pratt truss girder as shown in Figure 3 is considered
under operation and maintenance phase. It is assumed
to experience an unusually high deterioration in the
first 15 years of operation. For the remaining 35 years
of the service life, a bridge manager wants to design a
maintenance plan. The manager considers whether the
bridge should be repaired regularly after certain times
without SHM or is it worthwhile to do SHM before
repairing directly to minimize the risk and expected
costs. Therefore, a VoI analysis is performed to provide
the decision basis. The basic decision problem is
whether to choose e0, that is, no SHM or e1, that is,
DDS. If implementing DDS, there will be a cost of
monitoring CM with outcome of chances z1 indication
of damage or z2 no indication of damage. The outcome
of DDS will be influenced by the deterioration type b,
deterioration rate a, point in time employment year tm,
number of sensors, sensor location, measurement noise,
and Type-I error for indication threshold. So, the
decision-maker is wondering how to design a monitor-
ing and maintenance plan accordingly with different
deterioration rates and environment? If choosing DDS,
at which point in time during service life to implement
it? How many sensors should be installed? Where to
place the sensors? How does measurement noise affect
the result? and How to set the Type-I error for the indi-
cation threshold for the DDS? Based on the varied
information acquired by the DDS system outcome, the
manager has two options of actions, either a0 do noth-
ing or a1 repair the truss girder. When performing a
repair action, there will be a repair cost CR. Based on
the choice of actions, the truss bridge girder could be
either u1 safe or u2 failure state within the designed ser-
vice life TSL of 50 years. The failure of the truss will
lead to the cost CF , which account for the direct and
indirect consequences. The respective decision tree is
shown in Figure 4. With different combination of

deterioration rate a, point in time employment year tm,
number of sensors, sensor location, measurement noise,
Type-I error for indication threshold, and the decision
tree branches will be expanded.

The costs model is shown in Table 1, considering
the discount rate r in general for long-term regulations
ranged between 0.01 to 0.05 per year;49 here we
adopt for our calculation a constant discount rate of
r = 0.02 per year. The initial investment cost is chosen
for convenience as CI = 100 monetary units. The failure
cost CF and DDS cost CM are set in relation to the initial
investment costs. The normalized failure cost is set to
CF=CI = 10 and CM=CI = 0:001 per sensor is assumed.

VoI analysis

The value of DDS information when monitoring at
year tm is written as VoI(tm)

VoI tmð Þ = U�SL tmð Þ � USL ð17Þ

where USL is the expected service life utilities without
monitoring. U�SL(tm) is the expected service life utilities

with monitoring at year tm. Then the relative VoI will

be: VoI(tm) =VoI(tm)=jUSLj. The expected service life
utilities without monitoring USL is

USL =max UF ; UF,R½ � ð18Þ

where UF is the utility of doing nothing and fail, UF,R is
the utility of doing repair and fail. The utility of doing
nothing and fail UF is calculated as

UF =�
XTSL

t = 1

P FStð Þ � CF �
1

1 + gð Þt
ð19Þ

P FS tð Þ= P gS tð Þ<0ð Þ ð20Þ

where P(FSt) is the prior probability of system failure at
year t. The utility of doing repair and fail UF,R is

Figure 3. Illustration of truss bridge girder.
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UF,R =�
XTSL

t = 1

P FSt,RStj

� �
� CF �

1

1 + gð Þt
�
XnR

n = 1

CR �
1

1 + gð Þtj

ð21Þ

P FSt,RStj

� �
=

P FStð Þ, t\tj = arg P FStj

� �
= PTarget

� �
P FS t�tjð Þ
� �

, t ø tj = arg P FStj

� �
= PTarget

� �
8<
:

ð22Þ

where P(FSt,RStj ) is the probability of system failure at
year t, after repair event RStj at year tj. tj is the repair
year when the prior probability of system failure P(FSt)
equals to the target probability PTarget. The system will
behave like a new system after repair with same prob-
abilistic characteristics as originally. nR is the number
of repair times during the service life. The expected ser-
vice life utilities with monitoring U�SL(tm) at tm can be
written as

U�SL tmð Þ= UM +max UFjI ; UFjI ,R

	 

+max UFj�I ; UFj�I ,R

h i
ð23Þ

where UM is the utility of monitoring, UFjI is the utility
of failure given indication of damage, UFj�I is the utility
of failure given no indication of damage, UFjI ,R is the
utility of failure, given indication of damage and repair,
UFj�I ,R is the utility of failure given no indication of
damage and repair. The utility of monitoring UM is

UM =� 1� P FS tm

� �� �
� CM �

1

1 + gð Þtm
ð24Þ

The utility of failure given indication of damage UFjI
is calculated as

UFjI =�
XTSL

t = 1

P FS t \ Itmð Þ � CF �
1

1 + gð Þt
ð25Þ

P FS t \ Itmð Þ=
P FStð Þ, t\tm

P gS tð Þ<0 \ gU tmð Þø 0ð Þ, t ø tm

�
ð26Þ

P(FSt \ Itm ) is the pre-posterior probability of system
failure at year t if doing monitoring and giving indica-
tion of damage at year tm and doing nothing. The utility
of failure given no indication of damage UFj�I is calcu-
lated as

Figure 4. Illustration of decision tree.

Table 1. Costs model.

Discount
rate
r

Failure
cost
CF

DDS cost
(per sensor)
CM

Investment
cost
CI

0.02 1000 0.1 100

DDS: damage detection system.
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UFj�I =�
XTSL

t = 1

P FS t \ �I tmð Þ � CF �
1

1 + gð Þt
ð27Þ

P FSt \ �I tmð Þ =
P FStð Þ, t\tm

P gS tð Þ<0 \ gU tmð Þ<0ð Þ, t ø tm

�
ð28Þ

where P(FSt \ �Itm ) is pre-posterior probability of system
failure at year t if doing monitoring and giving no indi-
cation of damage at year tm and doing nothing.

The utility of failure given indication of damage and
repair UFjI ,R is

UFjI ,R =�
XTSL

t = 1

P FS t \ Itmð Þ,RStj

� �
� CF �

1

1 + gð Þt

�
XnI ,R

n = 1

CR �
1

1 + gð Þtj

ð29Þ

P FS t \ Itmð Þ,RStj

� �
=

P FS tð Þ, t\tm

P FSt \ Itmð Þ, tm<t\tj = arg P FS tj \ Itm

� �
= PTarget

� �
P FS t�tjð Þ
� �

, t ø tj = arg P FStj \ Itm

� �
= PTarget

� �
8>>><
>>>:

ð30Þ

where P((FSt \ Itm ),RStj ) is pre-posterior probability of
system failure at year t and giving indication of damage
at year tm and repairing at year tj. Here, tj is the year
when the P(FSt \ Itm ) equals to the PTarget. nI ,R is the
number of repair times during the service life after
implementing DDS for 1 year at tm and giving indica-
tion of damage.

The utility of failure given no indication of damage
and repair UFj�I ,R is

UFj�I ,R =�
XTSL

t = 1

P FS t \ �I tmð Þ,RStj

� �
� CF �

1

1 + gð Þt

�
Xn�I ,R

n = 1

CR �
1

1 + gð Þtj

ð31Þ

P FSt \ �I tmð Þ,RStj

� �
=

P FS tð Þ, t\tm

P FSt \ �I tmð Þ, tm<t\tj = arg P FS tj \
�I tm

� �
= PTarget

� �
P FS t�tjð Þ
� �

, t ø tj = arg P FS tj \ �I tm

� �
= PTarget

� �
8>>><
>>>:

ð32Þ

where P((FSt \ �Itm ),RStj ) is pre-posterior probability of
system failure at year t if doing monitoring and giving
no indication of damage at year tm and repairing at year

tj. Here, tj is year when the P(FSt \ �Itm ) equals to the
PTarget. n�I ,R is the number of repair times during the ser-
vice life after implementing DDS for 1 year at tm and
giving no indication of damage.

Structural probabilistic performance

The truss bridge girder has 29 components with 16 joint
nodes. Assume a probabilistic extreme loading S, which
is Weibull distributed with mean of 3.5 and standard
deviation of 0.1, applied vertically on the truss and
evenly distributed on the lower nodes 2, 3, 4, 5, 6, 7, 8
with 1/7 S. Thus, the axial force on each beam element
are calculated by the equilibrium equations. The truss’s
beams have similar geometrical and probabilistic
properties.

The failure of a truss component can be the failure
by yielding when it is under tension as well as failure by
buckling when it is under compression. If the compo-
nent is under tension, the critical strength is the yield
strength sy, the corresponding tension resistance is Ry,
which is related to the properties of materials. Ry is
modeled as lognormal distributed with 0.1 coefficient
of variation and the mean value is calibrated to a prob-
ability of system failure of 10�6 disregarding any dam-
age, considering the consequence of failure is large and
the relative cost of safety measure is small.34 If the com-
ponent is under bucking, the critical strength is the
buckling strength, which follows the Euler buckling
formula

sb =
p2EI

AL2
ð33Þ

where sb is the buckling strength, L is the column
length, A is the cross-section area, which is (10=144) m2

in this case, I is the cross-sectional moment of inertia,
E is the Young’s modulus, which is 14,400 MPa for cal-
culation. The corresponding buckling resistance Rb is
also modeled as lognormal distribution with mean of
Rb = sb � A and 0.07 standard deviation. The limit-state
functions of 29 components can be formulated as fol-
lows. Due to the absence of redundancy, a series-
system formulation is chosen for the truss bridge gir-
der; the system limit-state function is the minimum of
the ni components limit-state function

gS = min
i = 1 to ni

MR, iRi, 0 Di � Di tð Þð Þ �MS, iSið Þ ð34Þ

Then the probability of system failure P(FS), which
is coupled with time-variant damage models describing
continuously the deterioration process and structural
resistance degradation throughout the service life can
be written as

Long et al. 9



P FSð Þ = P
[ni

i = 1

MR, i Ri, 0 Di � a t � T0ð Þb
� �

�MS, iSi

� �
<0

 !

ð35Þ

According to JCSS (Joint Committee on Structural
Safety),50 the resistance model uncertainty MR, i is mod-
eled as lognormal distributed with mean of 1 and stan-
dard deviation of 0.05; the loading model uncertainty
MS, i is lognormal distributed with mean of 1 and stan-
dard deviation of 0.1; and the damage limit of compo-
nent Di is modeled as lognormal distributed with mean
of 1 and standard deviation of 0.3. The annual dete-
rioration rate a, the deterioration type b, and the dete-
rioration initiating time T0 are modeled accordingly to
Long et al.51

According to literature52 with general corrosion,
damage is equated to the total amount of metal lost.
This may be expressed in terms of thickness lost, for
example an expression in mm per year, or mass lost,
such as grams per square meter per year. Corrosion rate
on a carbon steel surface,53 in atmospheric environment
for example, industrial environment is 0.025–0.050 mm
per year and in marine environment is 0.125–1 mm per
year. So that three different deterioration rates are
selected in this article to present three different deterior-
ating conditions. It is assumed that the system is
required to take repair actions when the probability of
failure exceeds 10�4 according to the same target relia-
bility class with high costs of safety measures.50

As previously stated in section ‘‘Structural probabil-
istic system performance,’’ the correlation among dete-
rioration states of structural components should be
accounted for. For computation convenience, the sto-
chastic dependence is modeled by introducing a corre-
lation among the parameters of the models describing
deterioration. The damage limit is fully correlated.
Thus, the correlation of the initial resistances Ri, 0 and

the deterioration rate a among 29 components, rRi, 0

and ra is assumed to 0.5. It should be noted that due to
the non-redundancy of the truss structure, the depen-
dency among the deterioration process of different
components will not strongly influence the system relia-
bility as, for example, shown by Thöns et al.36

The probability of component/system failure is cal-
culated by Monte Carlo simulations based on Table 2.
The prior probability of system failure will increase
with time. The failure probabilities with a low dete-
rioration rate and same initial year but varied dete-
rioration types are shown in Figure 5(a). The failure
probability of the diffusion-controlled type of dete-
rioration will always be below the target probability
during the entire service life requiring no repair.
However, if the system is under corrosion and fatigue,
it is required to do the first repair at year 25 and in
total need to be repaired three times during service life.
If it is the type of sulfate attack concrete deterioration,
it needs to do the first repair at year 18 and in total to
be repaired nine times, which is shown in Figure 5(b).
The computation results of failure probabilities with
same deterioration type of corrosion and fatigue but
varied deterioration rate and initial year are shown in
Figure 5(c).

Properties of DDS

The DDS can detect stiffness loss in the elements of the
structure. A connection to the damage states is made in
this regard as follows. A stiffness loss dki is expressed as
the relative change of ratio of the initial axial stiffness
ki, 0 for element i

dki = 1� ki

ki, 0

ð36Þ

Table 2. Summary of the prior probabilistic model parameters.

Variable Description Dim. Dist. Exp.value SD

Ry Yield resistance MPa LN Cali. CoV = 0.1
Rb Buckling resistance MPa LN Equation (33) 0.07
MR, i Resistance uncertainty MPa LN 1.0 0.05
Si Loading MPa WBL 3.5 0.1
MS, i Loading uncertainty MPa LN 1.0 0.1
Di Damage limit – LN 1.00 0.3
T0 Deterioration initial time Year Det. 15/10/5 –
b Deterioration type Diffusion-controlled deterioration Det. 0.5 –

Corrosion and fatigue 1
Sulfate attack concrete deterioration 2

a Deterioration rate (/year) Low T0 = 15 LN 1.3E–5 0.001
Medium T0 = 10 LN 7.6E–5
High T0 = 5 LN 2.54E–4
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The element stiffness ki has a relation with cross-
section area Ai, length L and Young’s modulus E,
ki = E�Ai(t)=L. The cross-section Ai is reduced due to
the increase of damage states Di

Ai tð Þ= Ai, 0 � h Di tð Þð Þ ð37Þ

Ai, 0 is the initial cross-sectional area, Ai(t) is the
cross-sectional area at time t, h is the function between
damage state and the cross-section area. Then, the rela-
tion between damage state and stiffness loss can be
expressed as

dki = 1� Ai, 0 � h Di tð Þð Þ
Ai, 0

ð38Þ

dki = g � h Di tð Þð Þ ð39Þ

g is the correction factor, in which g = 1=Ai, 0. There
is small uncertainty about the cross-section area,
length, and Young’s modulus, so that the stiffness loss
uncertainty will be very small, which is neglected. To
simplify computation, we adopt dki = Di(t). The prob-
ability of damage indication is calculated for the SSDD
method based on the described damage states.30

Hereby, the following parameters of the detection sys-
tem are considered.

The number of sensors, their location, and their
noise properties influence the structural information
content that is contained in the measurement data. In
particular, it is well known that the number and loca-
tions of sensors can be optimized to obtain more precise
information about the dynamic properties of struc-
tures.54 An explicit link of the sensor placement to the
performance of the considered damage detection
method has been made by Döhler et al.55 Thus, the
number and location of sensors have a direct influence
on the damage detection probabilities, and hence on
the VoI that is examined in this article. Measurement
noise (as a property of the used sensors) affects the

signal-to-noise ratio and thus the information content
in the signals56 and is therefore also an important factor
for the examination of the VoI. The Type-I error rate is
a user-defined value for the trade-off between a low
false-alarm rate and a high probability of detection. It
is a design parameter for any damage detection method,
reflecting the applied reliability concept57 and has there-
fore a direct influence on the decisions taken based on
the outcome of the damage detection method. Hence,
its influence on the VoI should also be examined.

Following the above argumentation, five scenarios
of DDS settings are investigated. Within all the scenar-
ios, the structural system is under deterioration type
b = 1 corresponding to corrosion or fatigue, which is
reasonable for the deterioration of a steel truss bridge
girder. For the reference scenario, the bridge is under
low deterioration, the DDS is modeled with the accel-
eration sensors located in nodes 12, 13, 14 of the truss
in Y-direction recording the vibration response and
using the DDS algorithm. Based on the dynamic struc-
tural system model, a reference data set of length
N = 10,000 at a sampling frequency of 50 Hz is simu-
lated in the undamaged state. Ambient excitation
(white noise) is assumed at all degrees of freedom,
whose covariance is the identity matrix. Measurement
noise is added on the resulting accelerations with stan-
dard deviation at each sensor of 5% of the standard
deviation of the signal. The Type-I error for the indica-
tion threshold is set as 1%.

Based on the reference scenario, scenario (a) varies
the number of sensors between 1, 3, 5, and 8. Scenario
(b) varies the sensor positions when the number of sen-
sors is fixed with three sensors. Scenario (c) changes the
measurement noise from 5% to 1%, 50% and 100%.
Scenario (d) changes the Type-I error for indication
threshold from 1% to 0.1% and 5%. Scenario (e) varies
the deterioration rate a from low to medium and high.
A summary of the DDS parameters and deterioration
scenarios is shown in Table 3.

Figure 5. (a) Prior probability of system failure with varied deterioration types, (b) prior repair plan with varied deterioration
types, and (c) prior probability of system failure with varied deterioration rate and initial year.
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The probability of damage indication in each moni-
toring year is computed and shown in Figure 6. The
investigation of monitoring year is focused on the
period from the initial deterioration year to the first
scheduled repair year without monitoring from prior

analysis as shown in Figure 5(b), in order to plan moni-
toring before directly repair. Figure 6(a) shows that the
probability of damage indication P(I jD(tm)) increases
with the increasing number of sensors from 1, 3, 5 to 8
accordingly, which indicates that it is more probable to

Table 3. Summary of the sensor configuration and deterioration scenarios.

Scenario Sensor number Sensor node location Measurement noise Type-I error Deterioration rate a

Initial year Mean SD

Base 3 12, 13, 14 5% 1% T0 = 15 1.3E-5 0.001
(a) 1 13

3 11, 12, 13
5 11, 12, 13, 14, 15
8 11, 12, 13, 14, 15, 4, 5, 6

(b) 3 4, 5, 6
2, 5, 8
2, 3, 4
11, 13, 15

(c) 12, 13, 14 1%
50%
100%

(d) 5% 0.1%
5%
1%

(e) 3 12, 13, 14 5% 1% T0 = 15 1.3E–5
T0 = 10 7.6E–5
T0 = 5 2.54E–4

Figure 6. Probability of damage indication with varied scenarios (a) to (e).
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detect the damage with more sensors. When installing
three sensors, it is observed in (b) that the closer the
sensor location is to the weakest components 11 and 12
which have the largest axial force from calculation, the
larger the probability of damage indication will be. The
maximum P(I jD(tm)) during the service life will be the
case when the sensors are located in nodes 12, 13, and
14 (components 11 and 12). It is noted that due to the
symmetry of the truss bridge girder, the sensor posi-
tions in node 4, 5, and 6 will lead to the same curve as
for the sensor locations in 12, 13, and 14. When increas-
ing the measurement noise in scenario (c), the probabil-
ity of damage indication P(I jD(tm)) decreases, which
means that it will be more difficult to detect damage
when there is more noise. The probability of damage
indication P(I jD(tm)) increases when the Type-I error
for indication threshold is increased shown in Figure
6(d). For the same setting of the DDS, the probability
of damage indication P(I jD(tm)) increases with higher
deterioration rate, which is shown in Figure 6(e).

Pre-posterior updating

The pre-posterior probability of system failure given
damage detection information is computed following

section ‘‘Pre-posterior updating with DDS informa-
tion’’ taking basis in the Bayesian updating methods.
The results are shown in Figure 7 when a DDS is moni-
toring at a specific year with detecting no damage.
When increasing the number of sensors (a), the updated
probability of failure is much lower than in the case
with only one sensor. However, it can be seen that the
pre-posterior probability of system failure will not be
lower if installing more than three sensors. Instead, the
curve of the pre-posterior probability is similar if more
than one sensor is installed, which can be explained
that only sensor in a specific position provides suffi-
cient information. When installing three sensors (b), if
the sensor positions are far away from the weakest
components 11 and 12 (nodes 12, 13, and 14), such as
in node 2, 3, or 4, the updated probability of failure will
be larger toward the end of the service life. Changes in
the measurement noise (c) only have a small influence
on the updated curve of the pre-posterior probability,
which result in larger values toward to the end of the
service life when the measurement noise is large. When
increasing the Type-I error threshold (d), the updated
pre-posterior probability of failure during service
life shows only minor differences. When increasing
the deterioration rate (e), the relative reduction of

Figure 7. Pre-posterior probability of system failure during service life with varied scenarios (a) to (e) when monitoring and
detecting no damage at a certain year.

Long et al. 13



pre-posterior probability of failure given no damage
indication is smaller.

VoI analysis results

The VoI depending on the DDS monitoring year are
computed following section ‘‘VoI analysis.’’ The rela-
tive VoI (VoI) for the considered DDS and structural
system parameters is shown in Figure 8. When the dete-
rioration rate is low, the VoI is increasing fast from
year 16 in the beginning and slowly decreases when
reaching year 25. From Figure 8(a), the VoI is increas-
ing when increasing the number of sensors from 1 to 3,
but when increasing the number from 3 to 5 to 8, the
VoI is decreasing. When there is more than one sensor,
more sensors lead to a higher probability of damage
indication, but it does not lead to higher VoI because
some sensors did not provide additional valuable infor-
mation. In contrast, it will lead a lower VoI because of
higher sensor costs. The beneficial number of sensors is
three sensors.

Figure 8(b) gives an indication of VoI with changes
of the sensor layout when only three sensors are
selected. When the number of sensors is constant, the
sensors which are located near the weakest components
11 and 12 will yield a higher probability of damage

indication, which results in a higher VoI. The recom-
mended sensor locations are subsequently in node 12,
13, and 14.

Figure 8(c) investigates the relationship between VoI
and DDS measurement noise. If the sensor number,
positions are constant, then higher measurement noise
leads to a lower probability of damage indication,
because it will be harder to detect the damage. Hence,
the VoI will be lower.

Figure 8(d) describes how the VoI behaves with the
Type-I error threshold. The VoI decreases when
increasing the Type-I error threshold. Indeed, a higher
Type-I error threshold results in more false alarms, and
the system will detect more of the small damages.
Then, the repair cost per time will be lower due to the
early stage of damage, but more repairs may be needed
during the whole service life, which results in higher
total repair costs and a lower VoI.

When increasing the deterioration rate from low to
medium and high based on the reference scenario in
Figure 8(e), the change of the VoI is stronger with time
when the deterioration is medium and high. This is
because, the damage size will grow faster and larger
with time than in low deterioration, which will lead to
higher risk and repair costs. So that the choice of the
right monitoring time will be important to help reduce

Figure 8. Relative value of information with varied scenarios (a) to (e) and different DDS monitoring year.
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the risk and repair costs, resulting a strong influence on
VoI. The highest VoI will appear when the deteriora-
tion rate is medium, which can be explained by avoid-
ing high risks of structure failure when the damage is
too high and unnecessary repair when the damage
is too small. The optimized year to implement DDS
will be year 19 when under low deterioration, year 14
under medium deterioration, and year 8 under high
deterioration.

From Figure 8(a) to (c), the impact of the three mea-
surement parameters: sensor number, sensor location,
and measurement noise, is decreasing with monitoring
time. They show a similar behavior since they all influ-
ence the structural information content and are directly
related to the structural condition. For the sensor num-
bers, it is important to have a minimum number of sen-
sors. However, increasing the number of sensors beyond
the minimum number leads to a moderate decrease of
the VoI. Having sensor locations close to the weakest
component increases the VoI, but if the sensors are in
the vicinity of the weak point, the influence on the VoI
is not strong. The effect of the measurement noise on
VoI can be neglected toward the end of the service life.
This is due to the increase of damage size resulting in a
more pronounced measurement signal, which is influ-
enced less by the noise. However, in Figure 8(d), the
effect of the Type-I error on the VoI increases with mon-
itoring time. This is because the system will barely have
damage in the beginning, the probability of damage
indication will be very small no matter what the Type-I
error is. With increasing service life, the damage is grow-
ing to a more detectable size, the probability of damage
indication will be affected more by the Type-I error. As
shown in Figure 8(e), the most sensitive parameter over
the entire service life of the system is the deterioration
rate because it directly influences the risk of the struc-
tural failure and costs for repair.

With Figure 8(a) to (e), the optimal DDS and struc-
tural system can be identified as: three sensors in nodes
12, 13 and 14 with 1% measurement noise and 0.1%
Type-I error threshold to be employed at year 14 of the
service life on a truss girder with a medium deteriora-
tion rate.

Discussion

The primary purpose of this study is to determine the
structural and DDS influencing parameters on the
value of DDS. Earlier research suggests that the value
of SHM can be quantified,6 previous application study
focusses on methods of quantifying the VoI.58 Our
analysis provides a new insight into the relationship
between VoI-based decision-making and DDS before
its implementation. The results indicate that the

VoI-based decision support facilitates that optimal
SHM and structural system parameters can be identi-
fied leading to the maximum expected value of the util-
ity gain. The utility gain may encompass, for example,
an increased benefit generation, reduced costs for the
structural integrity management and reduced risk of
structural failure. These results clearly support some of
the earlier research53 that the quantification of the
value of the DDS information may serve as a basis for
DDS design and employment optimization.

Within the scope of this article, DDS information
and structural system parameters have been identified
leading to the highest expected risk and cost reduction
for the structural integrity management of a representa-
tive engineering structure. The VoI-based decision-
support beyond the scope of this article may encompass
various other decision scenarios such as the combina-
tion of different monitoring/measurement strategies
and techniques to determine the optimal maintenance
planning as well as service life extension.18,59

From the viewpoint of structural integrity manage-
ment, there is no necessity for continuous monitoring
with a DDS, as a single application in the service yields
a significant risk and cost reduction, through achieving
a significant value of DDS information. It should be
noted that multiple DDS information may incorporate
a high dependency and thus may prevent an increase of
the VoI. However, multiple and continuous structural
health information and their dependencies require fur-
ther research.

The application of VoI-based decision on the truss
girder has demonstrated its ability to support the design
and employment of a DDS before implementation. The
parametric analysis of the value of DDS information
takes basis in a generic and representative structural
system accounting for the dependence in the component
failure modes and in the deterioration of the individual
structural components. The choice of the structural sys-
tem and a comprehensive generic deterioration model is
representative for many—but not all—structural sys-
tems according to codes and standards. Besides, due to
the complexity of the decision scenario and the decision
analysis, assumptions focusing on fatigue and corrosion
degradation in conjunction with well-justified repair
and normalized cost models are applied. However, there
are still many challenges ahead. Clearly, for a specific
application, it is required to adjust the decision scenario
including the calibration of the generic and normalized
models, for example, with a more specific degradation
modeling approach.

Conclusion

This article introduces the VoI-based method to deter-
mine the structural system influencing parameters with
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deterioration type and deterioration rate as well as
DDS-influencing parameters including the number of
sensors, sensor location, measurement noise, and Type-
I error for indication threshold. Through quantification
of the value of DDS, it is shown that the design of the
DDS system (i.e. the number of sensors, sensor posi-
tions, noise, and indication threshold) can be optimized
as well as its deployment time to achieve maximum
expected life-cycle benefits.

This article facilitates comprehensive guidance for (a)
designing DDS by sensor number, sensor location, (b)
decision support for DDS employment by degradation
mechanisms, and (c) for the DDS utilization by deter-
mining the optimal time of information acquirement.

The example of the deteriorating truss bridge girder
under fatigue or corrosion illustrates that

1. It is cost and risk reduction efficient to implement
DDS compared to the scenario when directly
repairing without monitoring.

2. The structural deterioration rate is the most sensi-
tive parameter effecting of relative VoI of DDS
over the entire service life.

3. The optimal DDS employment year varies
depending on the DDS and structural system
properties.

4. The employment of only one DDS measurement in
the service yields a high relative VoI.

5. The number of sensors should be chosen with opti-
mization as more sensors do not lead to a higher
relative VoI.

6. The sensor locations should be chosen with thor-
ough consideration of the damage and failure sce-
narios of the structural system.

7. The measurement noise and the Type-I error for
indication threshold should be controlled as small
as possible in order to achieve the highest relative
VoI.

8. The value of DDS information quantification can
be a powerful tool to determine optimal settings
and sensor employment.

It should be noted that only a finite set out of many
possible sensor configurations have been analyzed in
this study, and there might be other configurations
which may lead to a slightly higher relative VoI.
Nevertheless, the results can be used as an example to
develop optimal lifetime maintenance strategies for
similar bridges to optimize the DDS settings and sensor
configuration for maximum expected utilities before
implementation of the DDS.
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ABSTRACT
Optimization of the duration of Structural Health Monitoring (SHM) campaigns is rarely performed.
This article provides a utility-based solution to posteriorly determine: i) optimal monitoring durations
and ii) the extension of the service life of the welds on a steel bridge deck. The approach is illustrated
with a case study focusing on remaining fatigue life estimation of the welds on the orthotropic steel
deck of the Great Belt Bridge, in Denmark. The identification of the optimal monitoring duration and
the decision about extending the service life of the welds are modelled by maximizing the expected
benefits and minimizing the structural risks. The results are a parametric analysis, mainly on the effect
of the target probability, benefit, cost of failure, cost of rehabilitation, cost of monitoring and discount
rate on the posterior utilities of monitoring strategies and the choice of service life considering the
risk variability and the costs and benefits models. The results show that the decision on short-term
monitoring, i.e., 1week every six months, is overall the most valued SHM strategy. In addition, it is
found that the target probability is the most sensitive parameter affecting the optimal SHM durations
and service life extension of the welds.
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1. Introduction

Many studies on Structural Health Monitoring (SHM) have
been made available in recent decades (e.g., Balageas, Fritzen,
& G€uemes, 2010; Farrar & Worden, 2007; Sohn et al., 2003).
These studies focus mainly on data acquisition, normalization,
cleaning, feature extraction and information condensation
(Farrar et al., 2003; Farrar & Worden, 2012; Sohn et al., 2003).
In the past decade, one of the main research topics in SHM
was using monitoring for the management of structures
(Okasha & Frangopol, 2012; Orcesi & Frangopol, 2011; Pozzi,
Zonta, Wang, & Chen, 2010). Among these works, Vanik et al.
presented a Bayesian probabilistic approach to SHM (Vanik,
Beck, & Au, 2000). Wenzel et al. related the life cycle manage-
ment for civil structures to SHM (Wenzel, Veit-Egerer,
Widmann, & To, 2011). Flynn and Todd (2010) developed an
approach for optimising sensor placement of a SHM system.

Herein, the optimal SHM system is the one leading to the
lowest Bayes risk (expected loss) in the context of the oper-
ational modelling of the SHM (Flynn & Todd, 2010; Todd,
Haynes, & Flynn, 2011). In continuation of research progress,
it has been gradually acknowledged that without a decision
analytical framework including the structural system perform-
ance, the SHM information cannot be optimally utilized for
the structural integrity management. Pozzi & Der Kiureghian,
Faber & Th€ons, and Straub proposed and worked on utilizing

Value of Information (VoI) theory to quantify the SHM per-
formance (Faber & Th€ons, 2013; Pozzi, Der Kiureghian, &
Kundu, 2011; Straub, 2014). Based on this approach, the ideal
SHM strategy is the one found with highest VoI (expected
utility gain) identified with a decision analysis.

The quantified value of SHM information has been uti-
lized to assess the impact of the SHM on decision-making
(Zonta, Glisic, & Adriaenssens, 2014) to optimise the struc-
tural integrity management (Qin, Th€ons, & Faber, 2015) to
evaluate a road viaduct fatigue safety (Bayane, Long, Th€ons,
& Br€uhwiler, 2019) and to optimize the sensor configuration
for damage detection systems (Long, D€ohler, & Th€ons,
2020; Long, Th€ons, & D€ohler, 2018). Moreover, in the
framework of European project of COST Action TU1402
(Diamantidis, Sykora, & Sousa, 2019; Sousa, Wenzel, &
Th€ons, 2019; Th€ons, 2019): “Quantifying the Value of
Structural Health Monitoring” (https://www.cost-tu1402.eu/)
detailed guidelines have been developed for operators, engi-
neers and scientists on quantifying the value of Structural
Health Information (SHI) for Decision Support.

However, in the field of SHM supported structural integ-
rity management, there are still open questions. One of the
issues is permanent versus short-term/periodic monitoring
(del Grosso, 2013). Permanent monitoring is relatively
expensive and may produce a very large amount of data
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requiring complex data transmission and management
resources. Periodic monitoring is performed with temporary
SHM installations on structures collecting data for a short
time in defined intervals facilitating instrumentation use for
multiple structures. Moreover, portable units may be
deployed to maximize the spatial coverage of structures.

The focus of the article aims thus to provide new insights to
strengthen the understanding of permanent versus periodic
monitoring in the case of long-term deterioration assessment
(fatigue) and to explore novel methodologies to rationalize the
use of monitoring (permanent versus periodic) through utility-
based decision analysis. For this, a methodology is illustrated
with strain and temperature data used to assess a long-term
deterioration mechanism as fatigue. Although the monitoring
system was permanently installed, one could think of scenarios
where sensors have been installed but not the acquisition units
via Unmanned Aerial Vehicles. This would allow for monitor-
ing a number of structures by having a limited number of data
acquisition units (expensive equipment). For other mecha-
nisms (e.g., to assess movement of bearings or articulations),
one could reason similarly: use short-term monitoring strat-
egies and then move the equipment to other structures.

This article posteriorly compares the SHM strategies in
regard to monitoring durations based on a reference continu-
ous monitoring dataset through utility-based decision ana-
lysis. The utility-based decision analysis is the basis of VoI
analysis, in which the VoI is defined as the expected utility
gain between (pre)-posterior decision analysis and prior deci-
sion analysis (Raiffa & Schlaifer, 1961). In this paper, a utility-
based posterior decision analysis is implemented based on the
obtained monitoring information to optimize SHM strategies
posteriorly in terms of monitoring durations, in the case that
the prior information of the structure is not available. With
this study, it is envisaged to provide:

1. a methodology to extend the fatigue service life of the
welds based on periodic monitoring,

2. a quantification on the duration of those periodic mon-
itoring, and

3. a comprehensive understanding of the main parameters
influencing the optimal decisions on the monitor-
ing strategies.

The article starts by introducing the methodology
employed for selecting optimal monitoring strategies and
deciding to extend the service lives of welded joints. This

includes utility theory and posterior decision analysis as well
as specific data-driven probabilistic models employed to esti-
mate remaining fatigue lives building upon the previous art-
icle by the authors (Long, Alcover, & Th€ons, 2019). The
proposed theoretical approach is then illustrated with a case
study from the Great Belt Bridge. The monitoring data has
been split between four options to simulate the case of peri-
odic monitoring for the purpose of the article. The posterior
expected utilities of different monitoring strategies are quanti-
fied and the optimal monitoring strategy and decision on ser-
vice life extension of the instrumented welds are determined.

2. Methodology

The methodology section introduces the principles of both
utility-based decision analysis and monitoring data-based
fatigue life predictions, which is shown in Figure 1. The
utility-based decision analysis solves the lifecycle integrity
management problems considering structural performance
assessment and prediction, consequences and lifecycle cost
and benefit, with establishment of the decision scenarios
and decision rules. The monitoring data-based fatigue life
prediction provides input information for the utility-based
decision analysis, such as monitoring costs and probability
of fatigue failure based on a probabilistic fatigue model.

2.1. Utility-based decision analysis

The utility theory dates back to 1738 when Bernoulli defined
that the value of an object must not be determined on the basis
of the price or cost, but instead on the utility it yields
(Bernoulli, 1738). Inspired by Bernoulli’s hypothesis, Von
Neumann et al. used it as a foundation to build their game the-
ory in 1944, which is applicable to various contexts (Von
Neumann, Morgenstern, & Kuhn, 2007). Furthermore, in 1961
Raiffa and Schlaifer formulated the decision theory (Raiffa &
Schlaifer, 1961). This is now applied to the field of SHM and
used for quantifying the value of monitoring information.

The decision process can be illustrated in a decision tree,
as shown in Figure 2. According to Raiffa and Schlaifer, a
utility (monetary) function u e, z, a, hð Þ is assigned to a deci-
sion maker to describe the decision consequences when per-
forming an experiment e, e.g., a SHM strategy according to
(Faber & Th€ons, 2013; Pozzi & Der Kiureghian, 2011);
observing a particular outcome z, e.g., detecting damage or
not; taking a particular action a, e.g., repair, replace or do-
nothing; and then obtaining a particular state of a structure
h, e.g., safe, damaged or failed. The utility function should
contain the total cost and benefits throughout the decision
process. The total cost will be the sum of the costs of conse-
quences (failure costs considering fatalities, economic, envir-
onmental and social impacts); the cost of actions (e.g.,
repair cost); and the cost of monitoring (strain gauges
investment, installation, operation and replacement costs,
etc.). The benefits are related to the socio-economic effects
for the state and company e.g., from toll charges and for the
users, e.g., time saving and for the environment, e.g., from
reduction of CO2 emissions.

Figure 1. Road map of the proposed methodology.
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However, the state of the structure is subjected to uncer-
tainties. Therefore, a probability P e, z, a, hð Þ needs to be
assigned to represent the belief of knowledge of the decision
maker regarding the state of the structure h after imple-
menting a strategy e, obtaining the outcome z and taking
an action a: There may be m states in total for the structure,
e.g., damaged, undamaged, slightly damaged or failed, etc.
So that the expected utility U e, z, a, hð Þ can be written as:

U e, z, a, hð Þ ¼
Xm
j¼1

u e, z, a, hj
� �

� Pðe, z, a, hj
�

(1)

Depending on how much information is available at the time
of decision making, the probabilities of the system states
P e, z, a, hð Þ can be differentiated as prior probability when
only the design information of the structure is known, poster-
ior probability when additional SHM information is obtained
and pre-posterior probability when SHM information is mod-
elled and predicted but not yet implemented. The expected
utility U e, z, a, hð Þ will be termed accordingly as prior utility,
posterior utility and pre-posterior utility (Faber, 2012).

When considering SHM, inspection and repair planning
within the lifecycle integrity management, the expected util-
ity during service life USL can be formulated as:

USL ¼ UB � UF � UR � UI � UM (2)

where:

UB ¼
XTSL

t¼1
B tð Þ � 1� P Ftð Þð Þ � 1

1þ cð Þt

UF ¼
XTSL

t¼1
CF tð Þ � DP Ftð Þ �

1

1þ cð Þt

UR ¼
XNR

i¼1
CR Tið Þ � P RTið Þ � 1� P FTið Þð Þ �

1

1þ cð ÞTi

UI ¼
XNI

j¼1
CI Tj
� �
� 1� P FTj

� �� � � 1

1þ cð ÞTj

UM ¼
XNM

m¼1
CMðTmÞ � 1� P FTmð Þð Þ �

1

ð1þ cÞTm

where, UB is the expected total lifecylce benifts, UF is the
expected total cost of failure during service life, UR is the
expected total lifecycle repair costs, UI is the expected total
inspection costs during service life, UM is the expected total
monitoring costs. In addition, BðtÞ is the annual benefit at

year t, CFðtÞ is the cost of failure at year t,CRðTiÞ is the
cost of repair at repair year Ti, CI ðTjÞ is the cost of inspec-
tion at inspection year Tj, CM ðTmÞ is the cost of monitor-
ing at monitoring year Tm, NR is the total number of
repair, NI is the total number of inspection, NM is the total
number of monitoring; P Ftð Þ is the probability of failure at
year t; DP Ftð Þ is the annual probability of failure at year t:
P RTið Þ is the probability of repair at repair year Ti; TSL is
the service life; c is the discounting rate. It is noted that a
decision rule will normally be introduced to simplify the
decision process, e.g. an action is required if the reliability
reaches a specified target probability PTarget:

The integrity management of a structure usually involves
multiple choices of actions and SHM strategies. The optimal
choice of action and SHM strategies is found through maxi-
mizing the expected utilities of different actions and SHM
strategies during service life. The optimal action and strategy
will result in the highest expected utility. In order to system-
atically analyse the expected utility influencing parameters
beyond the probabilistic engineering models, the target
probability PTarget , benefit B, failure cost CF, inspection
costs CI , repair cost CR, monitoring cost CM and discount
rate c will be parametrically analysed in the frame of a pos-
terior decision analysis in Section 4. The posterior probabil-
ity of failure will be calculated using probabilistic data-based
models described in Section 2.2.

2.2. Monitoring data-based fatigue life prediction

The monitoring data-based probabilistic model is built on
three types of data as show in Table 1: pavement tempera-
tures acquired from temperature sensors, vehicle traffic
counts obtained from a toll system and strain data obtained
from strain gauges. The following is a brief summary of the
monitoring data-based probabilistic model as shown in
Figure 3, for a detailed and comprehensive model
description it can be referred to (Farreras-Alcover,
Chryssanthopoulos, & Andersen, 2017) .

Fluctuations of the average of the pavement temperatures
Tt are modelled by a generic sinusoidal function with
parameters a1, a2, a3 and mT :

Tt ¼ a1 � sin a2 � t þ a3ð Þ þmT (3)

Daily-averaged pavement temperatures TDt is de-seasonalized
by deducting the daily mean value Tt and then differentiated
by the monthly standard deviation rT, t of the time series:

Figure 2. Illustration of a decision tree.
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T�t ¼
TDt�Tt

rT, t
(4)

The de-seasonalized daily-averaged pavement temperature
T�t is further fitted to an autoregressive (AR) model, where
uT, 1 is the coefficient of AR model and �T, t is a random
normal error parameter at time t:

T�t ¼ uT, 1 � TT, t�1 þ �T, t (5)

Similarly, the heavy daily-aggregated traffic count BDt is
firstly de-seasonalized to B�Dt by subtracting the daily average
lB, t and divided by the weekly standard deviation rB, t of
the time series:

B�Dt tð Þ ¼
BDt�lB, t

rB, t
(6)

A regression model is applied to identify the day-of-the-
week effect on the de-seasonalized time series B�Dt with the
parameters ki (ith regression coefficient), Xi, t (ith dummy
descriptive variable) and �B, t (random error process param-
eter at time t):

B�DtðtÞ ¼
X

ki � Xi, t þ �B, t (7)

The traffic regression model’s residuals are modelled by an
AR model where �B, t is the regression error at time t, uB, i is
the parameter of the AR model, p is the order of the AR
model and tt is a normal random error parameter:

�B, t ¼
Xp
i¼1

uB, i � �B, t�1 þ tt (8)

The daily-aggregated fatigue loading at a given welded joint,
DDt , is conservatively calculated from Equation (9), where
Dri is the ith stress range out of the total amount of stress
cycles NC within the time step Dt (1 day) and m is the SN
endurance curve slope:

DDt tð Þ ¼
XNC

i¼1
Drmi (9)

In orthotropic steel decks, the key causes of fatigue damage
are pavement temperatures and heavy traffic intensities.
Hence, a regression model among daily-averaged pavement
temperatures TDt , daily-aggregated heavy traffic counts BDt

and daily-aggregated SN fatigue loading DDt is introduced
by (Alcover, 2014). The left term in Equation (10) can be
regarded as normalized fatigue loading per heavy vehicle
when considering SN curve with fatigue parameter m ¼ 3,
which is for simplification conservatively considered as sin-
gle-slopped with no cut-off limit:

DDt

BDt
T0ð Þ ¼ hw � T06tn�p�1 � stot (10)

where T0 ¼ 1 T1
0 ::: T

p
0

� �T
is a specified temperature of

the pavement for which the forecast band is computed, h

are the parameters of the regression model, n the number of
data points corresponding to the training dataset associated
used to approximate the regression parameters, p the order
of the regression model, tn�p�1 a t-distribution with n� p� 1
degrees of freedom and stot the estimate of the overall regres-
sion model variance at a given TDtðtÞ:

The fatigue limit state function can be described on the
basis of the SN curves to measure fatigue damage and with
Miner’s accumulation law:

g X, tð Þ ¼ D� 1
A
�
Xt
t¼1

DDt tð Þ (11)

where X is the random variables vector, D is Miner’s sum at
failure (Miners Rule is one of the most used cumulative
damage equations for failures caused by fatigue. When the
sum of damage fractions is greater than 1.0, it will lead to
failure), A is the material parameter defining the SN fatigue
curve. Considering the above succession of regression and
time-series models considering daily-averaged pavement
temperatures and daily-aggregated heavy traffic, the limit
state function of fatigue is:

g X, tð Þ ¼ D� 1
A

Xt
t¼0

BDt tð Þ
Xpþ1
i¼1

hi�1T
i�1
Dt tð Þ þ tn�p�1stot

 !

(12)

The sensor measurement error could be further included in
the probabilistic model define in Equation (12). However,
the measurement error has been found to be insignificant
due to the quality of the installed equipment and its calibra-
tion in comparison to the other uncertainties (e.g., fatigue
damage parameter A, Miner’s sum at failure, etc.).

The weld will fail when the accumulated fatigue damage
is larger than Miner’s sum at failure. So that the probability
of failure PðFtÞ can be estimated via Monte Carlo
Simulation method as follows:

PðFtÞ ¼ Pðg X, tð Þ � 0Þ (13)

The uncertainties of the monitoring-based model are con-
sidered through modeling the SN fatigue parameter and
Miner’s sum at failure as random variables not linked with
SHM data. The uncertainties of the SHM data are treated
on the process of deriving three different models for fatigue

Table 1. Summary of the monitoring data from the monitoring system.

Monitoring system Monitoring data

Temperature sensor Pavement temperature
Toll system Vehicle traffic counts
Strain gauges Strain data

Figure 3. Flow chart of monitoring data-based probabilistic model.
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damage simulation: i) regression models for SN fatigue
damage prediction (here the uncertainties are captured by
the prediction bands of the models presenting described by
tn�p�1stot in Equation (10), ii) time-series models for tem-
perature prediction and iii) time-series models for traffic
prediction. The uncertainties of the time-series models are
captured by the random error process associated to each
model and characterized via SHM data.

The pavement temperatures impact stress ranges on
orthotropic steel decks and thereby influence fatigue life due
to pavement-steel composite action. The model presented in
Equation (10) predicts the fatigue damage at a given detail
per unit of heavy vehicle and at a given pavement tempera-
ture. Then, Equation (12) uses independent models for pre-
dicting heavy traffic counts and pavement temperatures.
These models are eventually used to calculate fatigue dam-
ages. The results presented in the article correspond to a
case with no increase of average pavement temperatures nor
traffic levels than the ones used to derive the different data-
based models. The probabilistic model for data-based fatigue
life prediction used in Equation (12) can consider different
scenarios in terms of future average temperatures and traffic
levels. This makes it possible to simulate unexpected events
such as COVID-19 as they will have an impact on the daily
number of heavy traffic vehicles used in the probabilistic
model for fatigue prediction. In effect, vehicle counts and
vehicle categories are monitored at the toll system of the
bridge on an hourly basis; they have been used to

characterize the traffic model BDt in Equation (12). More
details can be found in (Farreras-Alcover et al., 2017).

3. Case study

The above approach is illustrated with a case study from the
Great Belt Bridge, which is a suspension bridge with main
span of 1624m and maximum hanger length of 177m in
Denmark as shown in Figure 4. The cross-section of the
orthotropic steel bridge deck (OSD) is formed with a closed
steel box girder. Longitudinal troughs and crossbeams are
located about 4m apart on the OSD. The fatigue of through
to deck weld and trough splice weld is considered with
designed fatigue life of 100 years with certain fixed inspec-
tion intervals. Its operation started in 1998.

3.1. sHM system

In 2007, after approximately 10 years of operation, a compre-
hensive SHM system for design verification and condition
monitoring was installed. The SHM system on the Great Belt
bridge consists of, among others, a pavement temperature mon-
itoring system, traffic monitoring system (used by the toll sys-
tem) and strain monitoring system (Figure 5). The location of
the fatigue prone details to be assessed was determined prior to
the writing of the article to perform a fatigue assessment task
on the two critical details for the orthotropic steel deck under
consideration: a trough-to-deck weld (detail category 50

Figure 4. Illustration of Great Belt Bridge. (Temp. ¼ Temperature, SG¼ Strain Gauge).

Figure 5. Illustration of strain monitoring system.
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according to EN1993-1-9-Part1-9) and a trough-splice weld
(detail category 71 according to EN1993-1-9-Part1-9), as shown
in Figure 6. Details on the fatigue prediction methodology can
be found in (Farreras-Alcover, Andersen, & McFadyen, 2016).

A cross-sectional strain monitoring system instrumented
consists of 15 uniaxial strain gauges (Figure 5), of which 10
gauges (i.e. 1,3,4,6,7,9,10,12,13,15) monitor the transverse
nominal strains at the trough to deck weld, and 5 gauges
(i.e. 2,5,8,11,14) monitor the longitudinal nominal strains at
trough splice welds (Figure 6). Strain gauges 1 to 9 are posi-
tioned under the slow traffic lane, which is passed by the
heavy vehicles, while the others are positioned under the
fast traffic lane. Four temperature monitoring sensors are
embedded into two different cross-sections of the pavement
and record the temperature every 5minutes. At the tollgate,
the crossing vehicles are immediately recorded on an hourly
basis according to their measurements.

3.2. SHM strategies

Farreras-Alcover et al. concluded that the measurement
from SG8 (measured the trough splice weld) were associated
with the highest fatigue loading (Farreras-Alcover et al.,
2016). This weld is under the slow traffic lane where heavy
vehicles run inducing higher stress cycles than at the fast
lane. For convenience of demonstration, the modelling of
SHM strategies is based on the training data sets from SG8
between February 2012 to July 2012, which is assumed to
capture the entire temperature spectrum within a normal
year owing to the regular repeatability of the temperature
spread on the pavement (Farreras-Alcover et al., 2016).

According to the different monitoring phases and the
time duration, four different monitoring strategies in terms
of time durations are discussed as presented in Table 2. The
reference monitoring option e0 represents continuous moni-
toring for 168 days, option e1 to option e4 represent period-
ical monitoring with two phases of separate monitoring and
7, 14, 28, 42 monitoring days per phase respectively. The
time windows associated with 4 options are selected based

on i) data availability and ii) consideration of representative
’extreme’ weather conditions, i.e. data from February to
July. In general, temperature variations are lower during
cold conditions; hence this effect is accounted for in the cal-
culated reliability profiles.

3.3. Fatigue life prediction

The faituge life prediction is calculated following the probabil-
istic fatigue model from Section 2.2 and the variables in the
probabilistic model are simulated following the model
described in Table 3. The posterior probability of failure based
on monitoring data P Ft, eið Þ for monitoring straetgy ei is calcu-
lated with Equation (13) and is shown in Figure 7(a), which
increases with time. For the purposes of this study, it is
assumed that when reliability profiles reach a certain target
probability, it is required to take a certain action. The target
probability is set as 10�4 (reliability index b¼ 3.7) according
to the Joint Committee on Structural Safety (JCSS, 2001) con-
sidering normal relative costs of safety measures and minor
consequences of failure. The weld is assumed to get rehabilita-
tion after reaching the target probability. The probability of
repair at the repair year is equal to the target probability.
After the rehabilitation, the welds are assumed to behave as
new and the posterior failure probability is assumed to be the
failure probability in the year zero. The total number of reha-
bilitations depends on how many times it will reach the target
probability during the whole service life.

Let P Ft, ei jRtR

� �
be the posterior probability of failure after

the rehabilitation event RtR implemented at year tR with
SHM strategy ei; tR is the year in which the resulting poster-
ior probability of failure P Ft, eið Þ dependent on monitoring
data from strategy ei is equivalent to the target probability
PTarget: The posterior probability of failure after rehabilita-
tion P Ft, ei jRtR

� �
is calculated by:

P Ft,ei jRtR

� �
¼ P Ft,eið Þ, t<tR¼arg P FtR ,eið Þ¼PTarget

� �
P F t�tRð Þ,ei
� �

, t� tR¼arg P FtR ,eið Þ¼PTarget
� �(

(14)

The posterior probability of failure after rehabilitation
P Ft, ei jRtR

� �
given reference SHM data is shown in Figure 7(b).

It is worth noting that the fatigue reliability profiles are rather
conservative considering single-slopped SN curves with no cut-
off limit. The probabilistic models for the SN resistance are
given in Table 3 for the two details considered. A slope of

Figure 6. Strains gauges at welds (SG-TS¼ Strain Gauge Trough Splice, SG-TD:
Strain Gauge Trough-to-deck).

Table 2. SHM strategies.
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m¼ 3 is considered for the SN curve in log-scale (number of
cycles to failure versus stress range). The above assumptions
highlight that the results presented in the article shall be read as
an illustration of the presented methodology for assessing opti-
mal monitoring strategies, and not as representative of the
actual fatigue life of the instrumented details.

3.4. Decision scenario

As mentionend before the welds are designed with a fatigue
life of 100 years. After obtaining the predictions for fatigue
life based on monitoring data, for the purpose of the inves-
tigation presented in this article, it aims to explore whether
to extend the service life of the welds to 120 years. Given
that different monitoring strategies provide different predic-
tions of fatigue reliability profiles, it aims to figure out
which monitoring strategy can achieve maximum utilities/
benefits for the lifecycle integrity management to rationalize
the use of SHM techniques for fatigue assessment.

A utility-based decision analysis is introduced in section
2.1 to solve the problem. The decision process is visualised in
Figure 8 with a decision tree where ai denoting the option of
the actions, e.g., a0 corresponding to a service life of 100 years
and a1 to an extended service life of 120 years. For different
choices of the service life, the integrity of the welds needs to
be managed, which involves planned rehabilitation costs CR:
The states of the welds hi are defined as safe state h1 and fail-
ure state h2, which is effectively characterized by the fatigue
reliability profiles. Welds will fail when the accumulated
fatigue damage is larger than Miner’s damage at failure. If the
weld stays safe, the bridge will be operated normally with
annual benefits B: If the weld fails, unscheduled rehabilitation
events will be required, so that there will be a fatigue failure

cost CF which will be the unscheduled rehabilitation cost. ei
represents the different monitoring strategies from Section
3.2. Given the different monitoring phases and monitoring
durations, there will be different costs of monitoring CM:

3.5. Utility calculation

Uei is to denote the expected maximum utilities regarding
various actions with SHM strategy information ei :

Uei ¼ max½Uei , a0 ,Uei , a1 � (15)

in which, Uei , a0 is the expected utility when the service life
TSL is kept at 100 years (a0) with monitoring option
ei, Uei , a1 is the expected utility when the service life TSL is
extended to 120 years (a1) with monitoring option ei:

Let aj represent a0 and a1 (j ¼ 0, 1), then the expected
utility Uei, aj of the SHM strategy information ei for taking
action aj is calculated by:

Uei, aj ¼
XTSL, aj

t¼1
1� P Ft, ei jRtR

� �� �
� B � 1

ð1þ cÞt

�
XTSL, aj

t¼1
DP Ft, ei jRtR

� �
� CF �

1

ð1þ cÞt

�
XNm, ei

n¼1
CM � 1� P Ftm , ei jRtR

� �� �
� 1

ð1þ cÞtm

�
XNR, aj

n¼1
CR � 1� P FtR, ei jRtR

� �� �
� 1

ð1þ cÞtR

(16)

It has to be noted that in Equation (16), there is either a0
or a1, but not both in the same time; B is the annual

Table 3. Variables of the probabilistic model.

Parameter Symbol

Distribution/Expression

ReferenceFunction Mean Standard deviation

Trough-to-deck weld fatigue parameter A Lognormal 7.30E11 4.23E11 (Eurocode, 2005), (Jcss, 2001)
Trough-splice weld fatigue parameter A Lognormal 2.09E12 1.21E12 (Eurocode, 2005), (Jcss, 2001)
Miner’s damage at failure D Lognormal 1.0 0.3 (Wirsching, 1995)
Daily heavy traffic counts BDtðtÞ Equations (6) – (8)
Daily averaged pavement temperatures TDtðtÞ Equations (3) – (5)

Figure 7. Prediction of probability of fatigue failure: (a) during service life of 120 years and with target probability (b) if doing nothing or rehabilitation given refer-
ence SHM data.
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benefit, CF is the failure cost and CR is the planned rehabili-
tation cost (in relation to Equation (2), repair costs CR and
inspection costs CI are taken together in the case study and
presented as rehabilitation cost CR) ; tR is the year of
rehabilitation; CM is the cost of monitoring per day; Nm, ei is
the total monitoring days from strategy ei; NR, aj is the total
number of repair times with action aj; tm is the year of
monitoring. c is the discounting rate.

From the literature (Sund & Baelt, 2014), it is known
that the Great Belt bridge and the connected tunnel, roads
and railways together are called the Storebaelt link, which
was built between 1988 and 1998, with the total construc-
tion costs amounting to EUR 3.56 billion in 1988 prices.
The construction costs are financed through the state guar-
antee model and the loans are repaid by the users of the
facilities. It is found that the Great Belt Company had loans
guaranteed by the government and lent capital at an interest
rate of 1.5-2% (Mouter, 2015). According to the report
released by the Ministry of Transport and Sund & Baelt
(2014), it is revealed that the Storebaelt link would bring a
gain of EUR 50.87 billion over 50 years to Danish society,
equivalent to EUR 1.21billion annually, while the construc-
tion and operation of the link over a 50 year period costs
just EUR 18.66 billion.

Based on the information above, to illustrate the case
study, it is assumed that half of the gain from the Storebaelt

link comes from the Great Belt bridge, so that the normal-
ized annual benefit B for the Great Belt bridge is 0.17
(0.5�1.21/3.56) per year, the normalized cost of rehabilita-
tion CR is 5 (18.66/3.56), the normalized cost of failure CF

is assumed to be 100, the the normalized cost of monitoring
CM is assumed to be 0.01 per day, the discounting rate c is
0.02 (equavalent to interest rate) per year. It is noted that
due to the confidentiality, the data shall be read as an illus-
tration of the input paramenters of the presented method-
ology, and not as representative of the actual cost and
benefits of the Great Belt bridge.

3.6. Results

The utility calculation follows Section 3.5 and the results are
shown in Figure 9. The findings in Figure 9 indicate that for
all SHM strategies it is recommended to extend service life to
120 years. The utilities in Figure 9 show that option e1 will be
recommended due to the highest utility. It is found that in
the case study a long monitoring duration will reduce the
risk but increase the cost of monitoring, which leads to an
overall reduction in utility. The additional cost of longer
monitoring is not justified here because the reduction of risk
does not compensate for the increase of the cost. The optimal
SHM strategy is thus short-term monitoring. However, the
results may be sensitive to the variation of cost and benefit
models, which is investigated in Section 4.

4. Parametric analysis

Further to the results presented in Figure 9, due to the uncer-
tainties related to the input parameters, a parametric analysis
of the utilities associated with different monitoring durations
and and choices of actions is performed considering the vari-
ability of the model parameters: (a) target probability PTarget ,
(b) benefit B, (c) failure cost CF , (d) reahbilitation cost CR,
(e) monitoring cost CM and (f) discount rate c:

4.1. Target probability PTarget

The target probability PTarget is the acceptable optimum
failure probability which is known as an adaptive control
parameter based on the degree of failure impact and the
relative expense of protection measures (JCSS, 2001). It
varies from 10�6 (large consequences of failure, small

Figure 8. Decision tree of posterior decision analysis.

Figure 9. Identification on the most valuable SHM strategies during the bridge
service life.
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relative cost of safety meausres) to 10�3 (minor consequen-
ces of failure and large relative cost safety meaure) accord-
ing to (JCSS, 2001). The target probability PTarget was
previously chosen as 10�4 considering minor consequences
of failure and a normal relative cost of safety measures. For
assessing its effect, it is reduced from 10�4 to 10�5 and the
outcomes are shown in Figure 10(a). Reducing the target

probability means that decision-makers are more conserva-
tive with lower tolerance of risk leading to the welds being
rehabilitated more often during service life.

Figure 10(a) presents the utilities with the abovemen-
tioned change. The uitilies are all increasing with the
increase of the target probability. It increases linearly in
some ranges but stays constant in other ranges. The utilities

Figure 10. utilities associated with different monitoring durations and choices of actions considering the variability of the model parameters: (a) target probability
PTarget, (b) benefit B, (c) failure cost CF, (d) inspection and rehabilitation cost CR, (e) monitoring cost CM and (f) discount rate c:
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curves of options e1 and e2 with action a1 behave differently
from the other curves. They start at the lowest value but
end the highest values at the highest target probabilities.
That’s because options e1 and e2 provide higher probability
of failure than others. Hence, when PTarget is high, options
e1 and e2 will reach the target probability ealier, thus result-
ing in more times of rehabilitation when reaching 100 years
ða0Þ: To compansate the increase of the rehabilitation costs,
it will be suggested to continue operation to 120 years (a1).
Their flat plateau is however significantly lower than the
plateaus of the other curves. The a0 action is more consist-
ent with longer constant flat plateau over almost all of the
observed range. For a low value of PTarget, all options except
e1 and e2 have very similar utility values.

There are certain thresholds for PTarget where sudden
increases of the utilities occur. When PTarget < 2 � 10�5,
option e3 with action a0 has the highest utility. When

2 � 10�5 � PTarget < 3 � 10�5, utility with option e4 and
action a1 is the highest. When

3 � 10�5 � PTarget < 7 � 10�5, utility with option e3 and
action a1 is the highest. When PTarget < 2 � 10�5, option e1
with action a1 will be recommended. A summary of most
valued decisions with changed of PTarget can be found in
Table 4. The summary of utilities in Figure 10(a) shows that
the change of the target probability actively affect the deci-
sion of optimal SHM durations and service life extension of
the welds. The tolerant- to- risk decision maker (high value
of PTarget) will get more benefit with the change on
the PTarget:

4.2. Benefit B

The annual benefit is subjective to change due to the growth
of population, change of urban planning etc. Therefore, the
annual benefit rate B is increased and the results are shown
in Figure 10(b). It is found that e1 has the highest utilities
and the utilities associated with a1 extending service life to
120 years are always higher than those with a0: This is
because of a higher profit-drive leading to a longer oper-
ation period. Figure 10(b) shows that the utilities increase
linearly with the increase of benefit, but the difference
between the slop of cures of the varied monitoring dura-
tions is very small.

4.3. Cost of failure CF

When increasing the cost of failure CF from 100 to 1000,
the computation results in Figure 10(c) display the same
trend as in Figure 9 leading to the extension to 120 years
ða1Þ with option e1: The utilities are slightly decreasing with
the increase of CF: The choice of the service life extension
and choice of monitoring duration are not influenced much
by the change of cost of failure. It is because the difference
between the utilities for 120 years and 100 years is the same.
It is also due to the very small annual probability of failure,
the accumulated risk of failure is comparably small as well.

4.4. Cost of rehabilitation CR

The cost of rehabilitation may be subject to change due to
the choice of rehabilitation methods. When increasing the
cost of rehabilitation CR from 5 to 50, the utilities in Figure
10(d) strongly decrease and become negative for both keep-
ing the service life at 100 years a0 and extending it to
120 years a1: That is because the accumulated benefits and
reduction of risk of failure cannot compensate the increase
of cost of rehabilitations when the rehabilitation cost is too
high. The variations between the maximum utilities of all
the options in Figure 10(d) are very small. It can be inter-
preted that when the cost of rehabilitation is very high, it is
no longer worthwhile to investigate the SHM strategies,
which is not competitive, but the focus should be on finding
solutions to reduce the cost of rehabilitations.

4.5. Cost of monitoring CM

The cost of monitoring may differ based on the choice of
monitoring techniques. When increasing the cost of moni-
toring CM from 0.01 to 0.1 per day, Figure 10(e) shows that
it is not beneficial to do monitoring with reference SHM
option e0 due to high monitoring costs. As expected, the
utility decreases with increasing monitoring durations, but
the decreasing gradient is different. The curve of option e1
has the lowest gradient. Therefore, it is recommended to do
monitoring with option e1 and extend the service life to
120 years. A decision-maker could learn that the sparser and
shorter the SHM campagins, the better is the payback of
monitoring and lesser its sensitive to the SHM cost.

Table 4. Summary of the most valued decisions about the SHM strategy to adopt, regarding the critical parameters.

Critical parameter Most valued decision

Target probability, PTarget For PTarget < 2 � 10�5, monitoring for 4 consecutive weeks every 6 months,
given the service lifetime is kept to 100 years (e3, a0)

For 2 � 10�5 � PTarget < 3 � 10�5, monitoring for 6 consecutive weeks every 6 months,
given the service lifetime is extended to 120 years (e4, a1)

For 3 � 10�5 � PTarget < 7 � 10�5, monitoring for 4 consecutive weeks every 6 months,
given the service lifetime is extended to 120 years (e3, a1)

For PTarget � 7 � 10�5, monitoring for 1 week every 6 months,
given the service lifetime is extended to 120 years (e1, a1)

Benefit, B Monitoring for 1 week every 6 months, given the service lifetime is extended to 120 years (e1, a1)
Cost of failure, CF
Cost of rehabilitation, CR
Cost of monitoring, CM
Discounting rate, c
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4.6. Discounting rate c

The discount rate is also connected with the so-called social
discount rate, which represents the value that society assigns
to its existing situation compared to potential future states.
It has significant variations in practice around the world
(Zhuang, Liang, Lin, & De Guzman, 2007), with lower levels
introduced by developed countries (3%-7%) than the devel-
oping countries (8-15%). The value of discount rate also
changes with time depending on public policies, e.g., the
Danish Ministry of Finance in May 2013 reduced its social
consumption discount rate from 5% per year to 4% per year
for the first 35 years for the investment of long-term proj-
ects, 3% for the years in the interval 36 to 69 years, and 2%
for the rest of years (Finansministeriet, 2013).

The discounting rate c is increased from 0.02 to 0.2 and
the results in Figure 10(f) illustrate that the utilities are
exponentially decreasing and option e1 has the highest util-
ities. The utilities of keeping 100 years a0 or extending to
120 years a1 have almost the same value. When the dis-
counting rate c is larger than 0.05, the utilities become nega-
tive. That’s because a higher discount rate means greater
uncertainty and the cash flow in the future will have a lower
value. Since money loses value fast with time, it is not bene-
ficial to invest on long-term return projects. Thus it may be
recommend not to invest in monitoring at all when the dis-
counting rate c is high. A decision-maker could learn that
the longer is the implementation of the SHM strategy, the
higher the importance of the economic situation of
the country.

5. Conclusions

Many studies focus on SHM data gathering, processing and
probabilistic model developing. Building upon these studies,
this article contains methodology to utilize the obtained
monitoring information for the determination of i) optimal
monitoring durations and ii) service life extension of the
welds on a steel bridge deck. Through a posterior utility-
based decision analysis of the welds on an orthotropic steel
bridge deck case study, it is shown that a short-term SHM
strategy has a higher expected utility and is thereby pre-
ferred. In contrast, long-term monitoring duration reduces
the risks but leads to an increase of the monitoring costs,
which in turn leads to an overall reduction in the
expected utility.

Through a parametric analysis, this article shows how the
target probability PTarget , benefit B, failure cost CF , rehabili-
tation cost CR, monitoring cost CM and discounting rate c
influence the expected value of the utility and thus
the decisions:

� It is found that the target probability PTarget is the most
sensitive parameter as the change of PTarget will directly
change the number of rehabilitation times and the pos-
terior probability of failure, thus change the total
expected rehabilitation costs and the accumulated risk of
failure, resulting in different choices of monitoring

options and service life extension. However, PTarget may
be subjected to optimization in conjunction witht the
risk attitude of the decision makers. The tolerant- to-
risk decision maker (high value of PTarget) will get more
benefit with the change on the PTarget:

� An increase of annual benefit B will lead to service life
extension. A higher profit-drive will lead to a longer
operation period.

� SHM strategies become not competitive (i.e., not worth-
while) when the cost of rehabilitation is too high. The
rehablitation methods should be chosen carefully as a
high rehabilitation cost CR results in negative utilities.

� An increase of monitoring cost CM will result in a short-
term monitoring option. The sparser and shorter the
SHM durations, the better is the payback of monitoring
and lesser its sensitive to the SHM cost.

� For the investment in monitoring, the discounting rate c
should be thoroughly considered, as a high discounting
rate c will lead to significantly declining utilities. In such
a case, investing in long-term ventures is not advanta-
geous and short-term returning investment is more ben-
ficial. The longer is the implementation of the SHM
strategy, the higher the importance of the economic situ-
ation of the country.

The presented research work considers solely the fatigue
reliability and service life management of selected welds on
an orthotropic steel bridge deck. Future research is needed
to investigate the problem on a system level. Moreover, due
to the methodology specificities, several assumptions on
fatigue life prediction have been made and normalized cost
and benefits models used. This highlights that the results
presented in the article shall be read as an illustration of the
presented methodology for assessing optimal monitoring
strategies, and not necessarily as the actual fatigue life of the
instrumented details and not as representative of the actual
cost and benefits of the Great Belt bridge. Future research is
envisaged to explore comprehensive probabilistic formula-
tions of cost and benefit function and fatigue life prediction
model considering not only a single slopped SN curve.

Notations list

u e, z, a, hð Þ Utility function
e The SHM strategy/experiment
z The SHM /experiment outcome
a Action
h System state
P e, z, a, hð Þ Probability of the state of the structure h after imple-

menting a strategy e, obtaining the outcome z and tak-
ing an action a.

U e, z, a, hð Þ Expected utility function
USL Expected utility during service life
UB Expected benefit
UF Expected cost of failure
UR Expected cost of repair
UI Expected cost of inspection
UM Expected cost of monitoring
BðtÞ The annual benefit at year t
CFðtÞ The cost of failure at year t
CRðTiÞ The cost of repair at repair year Ti

CI ðTjÞ The cost of inspection at inspection year Tj
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CM ðTmÞ The cost of monitoring at monitoring year Tm

Ti The repair year
Tj The inspection year
Tm The monitoring year
NR The total number of repair
NI The total number of inspections
NM The total number of monitoring
P Ftð Þ The probability of failure at year t.
DP Ftð Þ The annual probability of failure at year t
P RTið Þ The probability of repair at repair year Ti

TSL The service life
c The discounting rate
PTarget The target probability
DDt S-N fatigue loading aggregated during a time interval Dt
BDt Daily aggregated counts of daily vehicles
TDt Daily averaged pavement temperature
stot Estimator of the total variance of a regressing model
T0 Given pavement temperature
n Number of available datapoints
p Order of a polynomial regression model
tn�p�1 t-probability distribution with n-p-1 degrees of freedom
D Miner’s sum at failure
A Material parameter defining the SN fatigue curve.
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ABSTRACT:  
Fatigue safety verification of existing bridges that uses ‘‘re-calculation’’ based on codes, usually 

results in insufficient fatigue safety, triggering invasive interventions. Instead of “re-calculation”, 

Structural Health Monitoring (SHM) should be used for the assessment of the existing bridges. 

Monitoring systems provide data that can reduce uncertainties associated with the fatigue loading process 

and the structural resistance. The objective of this paper is to quantify the value of the SHM system 

implemented in a 60-years-old road viaduct to investigate its fatigue safety, through modeling of the 

fundamental decisions of performing monitoring in conjunction with its expected utility. The 

quantification of the conditional value of information is based on the decision tree analysis that considers 

the structural reliability, various decision scenarios as well as the cost-benefit assessments. This leads to 

a quantitative decision basis for the owner about how much time and money can be saved while the 

viaduct fulfills its function reliably and respects the safety requirements. The originality of this paper 

stands in the application of the value of information theory to an existing viaduct considering the fatigue 

failure of the system based on the monitoring data and the cost-benefit of monitoring method.   

 

INTRODUCTION 

The fatigue assessment of existing bridges is 

important for sustainable use from both technical 

and economical point of view. To achieve this, 

bridge managers should understand existing 

bridges and use tools to take accountable 

decisions about their current and future fatigue 

safety. Bridge assessment based on re-

calculations using design code provisions usually 

results in insufficient fatigue safety that requires 

strengthening or replacing the structure. This 

finding is often a problem on paper only and does 

not reflect the real performance of existing 

bridges. Subsequently, and in order to make the 

best decisions during the assessment, structural 

health monitoring (SHM) system is used, and the 

value of SHM data is quantified based on the 

decision tree that considers the structural 

reliability, various decision scenarios as well as 
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the cost-benefit assessments. This methodology is 

illustrated with a case study, Crêt de l’Anneau 

Viaduct. 

The structure is a 60-year-old composite 

concrete-steel road-viaduct (Figure 1) located in 

Switzerland, as part of a cantonal road leading 

from Switzerland to the French border. It has 

seven typical spans of 25.6m length and an 

approach span of 15.8m. The reinforced-concrete 

(RC) slab of variable thickness ranging from 17 to 

24cm is fixed on two steel girders of 1.3m height. 

The girder is composed of a series of single span 

beams linked by hinges. The total length of the 

viaduct is 195m. 

Because of a “re-calculation” based on 

design code provisions, the viaduct was suspected 

to present fatigue problems after 60 years of 

service. To take the best decision about doing 

nothing or replacing the structure, SHM system 

was implemented in the viaduct in June 2016 to 

investigate its effective fatigue behavior. For such 

a situation, a value of information analysis can be 

utilized to quantify the value of performing SHM 

and to derive the optimal decision about doing 

nothing or replacing the structure. 

The Value of Information (VoI) theory has 

been developed by Raiffa and Schlaifer (1961) 

and is rooted in Bayesian updating and utility-

based decision theory with a specific format to 

quantify the utility increase due to additional 

information. The utility increase of additional and 

already obtained information is termed as the 

Conditional Value of Sample Information (CSVI). 

Monitoring system 

A Structural Health Monitoring (SHM) system is 

implemented for one year to investigate the 

fatigue behavior of the viaduct. More details 

about the monitoring system can be found in 

(Bayane and Brühwiler 2018).Two techniques are 

used including strain gauges to measure the strain 

in steel reinforcement bars and thermocouples to 

measure the temperature of the concrete, the steel, 

and the air. Two slabs are instrumented, and for 

each slab, strain gauges are implemented in two 

transverse rebars and two longitudinal rebars at 

the mid-span, which is the most loaded part of the 

RC slab. 

 
Figure 1: View of the Crêt de l’Anneau Viaduct  

Monitoring data 

The most critical part of the viaduct for fatigue is 

the RC slab since the recorded strains in the steel 

girder are smaller than the endurance limit. As 

such, the fatigue verification of the viaduct for the 

case study is focused on the RC slab in which the 

fatigue failure is determined by the failure of the 

steel rebars. 

Stress cycles are calculated from the annual 

measured strain in the most loaded rebars. 

Temporal variation of stresses is first deduced 

from the recorded strain by a multiplication with 

the steel elastic modulus of 210GPa. The 

Rainflow counting method is then used to provide 

a set of stress cycles from stress variations. Table 

1 presents the stress cycles 𝑛𝑖,1 over one year for 

each stress range 𝑖 of the instrumented transverse 

rebar 1  at the mid-span, for the recorded 

stresses ∆𝜎𝑖,1. 
Table 1. Stress spectra 

𝛥𝜎𝑖,1 [MPa] 𝑛𝑖,1 

5 67051 

10 18180 

15 6391 

20 2744 

25 1091 

30 392 

35 181 

40 75 

45 24 

50 12 

55 5 

60 2 

65 3 

70 1 

85 1 
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PROBABILISTIC MODEL FOR THE 

STRUCTURAL SYSTEM 

The probability of fatigue failure of the viaduct is 

evaluated before the monitoring, using code 

provision criteria, which is given in the Swiss 

Standard, and after the monitoring, using the 

recorded data. Therefore, two probabilistic 

models are developed, the prior model 

corresponding to code provisions and the 

posterior model corresponding to monitoring data. 

The formulation of the fatigue limit state for the 

prior and posterior models will be based on the S-

N curve approach.  

Fatigue safety is verified according to two 

levels; the first level requires that the fatigue 

action effect is below the endurance limit. The 

second level is performed when the first level is 

not fulfilled. It requires the calculation of damage 

accumulation according to Miner’s rule where the 

total fatigue damage must be less than 1.  

To perform fatigue damage accumulation, 

the S-N curve parameters are taken from the Swiss 

standard SIA269. The straight reinforcement bars 

of the viaduct have a fatigue resistance Δσsd,fat 

equal to 150 MPa, and an endurance limit Δσs,D of 

120 MPa. The slope m of the S-N curve is equal 

to 4 (SIA269). 

Prior damage model 

Based on the S-N curve, with Miner’s 

accumulation rule, the fatigue limit of rebar 𝑗 in 

the concrete can be expressed by 𝑔𝑗(𝑡) (Thöns, 

2018): 

         𝑔𝑗(𝑡) =  𝛥 − 𝐷𝑝𝑟𝑖𝑜𝑟𝑗(𝑡)                        (1) 

𝐷𝑝𝑟𝑖𝑜𝑟𝑗(𝑡) =  𝑛𝐷𝑡 
𝐸[𝛥𝜎𝐷

𝑚]

𝐾
                (2) 

𝐸[𝛥𝜎𝐷
𝑚] = (𝑀𝐿𝑀𝜎𝑀𝐷𝑀𝐾𝑘)

𝑚Γ(1 +
𝑚

𝜆
) (3) 

Γ is the gamma function, 𝛥𝜎𝐷  is the design 

value of stresses that has a Weibull distribution 

(Thöns et al. (2015)) with the parameters 𝜆 and 𝑘, 

which are the scale and the location parameters. 𝐾 

is the material parameter from the S-N curve, 𝑚 

is the slope value, 𝑛𝐷  is the annual cycle. 𝑀𝐿  is 

the model uncertainty of traffic load. 𝑀𝜎  is the 

model uncertainty of stress ranges. 𝑀𝐷  is the 

model uncertainty of accumulated damage. 𝑀𝐾 is 

the model uncertainty of S-N curve. The 

parameters 𝜆 and 𝑘 of the stress distribution are 

adjusted to reach both the mean value of 𝛥𝜎𝐷 

which is equal to 𝐸(𝛥𝜎𝐷)  and an accumulated 

fatigue damage of 1.0 after the service life 𝑡𝑆𝐿 , 

i.e.120 years.  

               𝜆 ∗ (Γ (1 +
1

𝑘
)) = 𝐸(𝛥𝜎𝐷)               (4)   

               
𝑛𝐷𝑡𝑆𝐿 (𝑀𝐿𝑀𝜎𝑀𝐷𝑀𝐾𝑘)

𝑚Γ(1+
𝑚

𝜆
)

𝐾
= 1   (5) 

 

Table 2 includes the random variables, their 

distributions and their parameters used to perform 

the prior study. Monte Carlo simulation is used to 

find the cumulative probability of component 

failure throughout the service duration. 

 
 

Table 2. Probabilistic model for the random 

variables, prior study 

 

 

The annual cycles of heavy trucks for 

principal roads is equal to 350’000 cycles per 

direction. This value was taken from the European 

Var. Des. Dist. Mean Std. Ref. 

ΔσD Design value of 

stresses [MPa] 

WB 200 - FEM 

SIA 261 

Δ Miner’s sum at 

failure 

LN 1.0 0.3 JCSS 

nD Annual cycles 

[/year] 

Det. 7.105 - SIA 261 

m Slope value Det. 4 - SIA 269 

K Material 

parameter from 

SN curve 

[MPa] 

LN 1015 0.58 SIA 269 

& 

JCSS 

k Location 

parameter 

Det. Cali. - Eq. 4,5 

λ Scale parameter Det. Cali. - Eq. 4,5 

ML Uncertainties 

related to traffic 

load calculation 

LN 0.68 0.102 Folsø 

et.al. 

(2002) 

Mσ Uncertainties 

related to stress 

calculation 

LN 1.00 0.05 Folsø 

et.al. 

(2002) 

MD Uncertainties 

related to 

accumulated 

damage 

LN 1.00 0.05 JCSS, for 

rebar 

MK Uncertainties 

related to S-N 

curve 

LN 1.00 0.05 Assumed 
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traffic and was reduced by 30% to consider the 

volume of traffic in Switzerland (SIA261). 

The recalculation value of stresses 𝛥𝜎𝐷 was 

obtained using the load model 1 presented in the 

Swiss Standards (SIA261). The load model was 

applied to a 3D Finite Element Model (FEM) of 

the viaduct, considering the initial properties of 

materials and boundary conditions. The 

maximum stress at the mid transverse span of the 

slab was calculated and multiplied by a load factor 

of 1.50 to determine the re-calculation value of 

stress of 200 MPa (SIA261). 

The prior fatigue damage of the instrumented 

rebar was calculated according to Eq. 1-5. A 

normal distribution 𝑓𝐷𝑝𝑟𝑖𝑜𝑟 was fitted to the prior 

damage, and the corresponding mean and 

standard deviation were identified. The prior 

damage distribution is plotted in Figure 3. 

Posterior damage model 

Monitoring data provides the stress range and the 

corresponding cycles. The fatigue safety is then 

evaluated according to the level one of 

verification. Since the highest recorded stress 

range of 85 MPa is significantly smaller than the 

endurance limit (120MPa), the level one of 

fatigue verification is fulfilled as illustrated in 

Figure 2. Therefore, to perform a Miner’s damage 

calculation, an arbitrarily chosen amplification 

factor of 4 is applied such that the stress ranges 

exceed the endurance limit and the fatigue 

damage can be calculated. 

 

 
Figure 2. Annual stress ranges and cycles of the most 

loaded rebar 

 

A likelihood damage model is developed 

based on the recommendations of JCSS (2006). 

Like for the prior study the model uses the S-N 

approach that can be expressed in the form of: 

 𝑁𝛥𝜎𝑚 = 𝑘 (6) 

where N is the number of stress cycles to failure 

at a constant amplitude stress range Δσ, and k and 

m are material parameters.  

In order to deal with variable amplitude 

loading in the S-N approach, fatigue damage is 

quantified in terms of Miner’s damage summation. 

According to this rule, all stress cycles cause 

proportional fatigue damage, which is linearly 

additive. The scatter in the stress history may be 

neglected, and the damage 𝐷𝑙𝑖𝑘𝑒𝑗 of the rebar 𝑗 is 

equal to: 

 𝐷𝑙𝑖𝑘𝑒𝑗 = ∑
𝑛𝑖,𝑗

𝑁𝑖,𝑗
𝑖   (7) 

where 𝑁𝑖,𝑗 is the number of stress cycles to failure 

at a constant amplitude stress range 𝛥𝜎𝑖,𝑗 

and ni,j is the number of actual stress cycles for the 

stress range 𝛥𝜎𝑖,𝑗 

with      𝑙𝑜𝑔𝑁𝑖,𝑗 = 𝑙𝑜𝑔𝑘 −𝑚𝑙𝑜𝑔𝛥𝜎𝑖,𝑗 + ɛ              (8) 

where ɛ is the statistical error in the SN curve 

and       𝛥𝜎𝑖,𝑗 =  𝐸(𝛥𝜀𝑖,𝑗 + 𝑀𝜀)                           (9) 

where 𝐸      is the young modulus of steel rebars 
            𝛥𝜀𝑖,𝑗 is the strain range 𝑖 for the rebar 𝑗 

           𝑀𝜀    is the measurement error 

The likelihood of damage can then be written as 

follow:   

      𝐷𝑙𝑖𝑘𝑒𝑗 = ∑
𝑛𝑖,𝑗𝑡(𝐸(𝛥𝜀𝑖,𝑗+𝑀𝜀))

𝑚 

10ɛ+𝑙𝑜𝑔𝑘𝛥𝜎𝑖,𝑗>Δσs,D 
          (10) 

Table 3 includes the definition of the 

random variables, their distributions and their 

parameters used to calculate the likelihood 

damage. Monte Carlo simulation is used to find 

the cumulative probability of component failure 

throughout the service duration. 
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Table 3. Probabilistic model for the random 

variables, likelihood study 
Var. Des. Dist. Mean Std. Ref. 

Δ Miner’s sum 

at failure 

LN 1.0 0.3 JCSS 

ɛ Statistical 

error in SN 

curve 

N 0 0.5 JCSS 

E Young 

modulus of 

steel (MPa) 

LN 2.1 

105 

0.05 JCSS 

Mɛ Monitoring 

error 

N 0 10-6 Monitorin

g 

Log

k1 

Normal 

(MPa) 

N 16. 

2862 

0.4 (Rastayest

, et al., 

2018) 

𝑚 Slope value Det. 4 - SIA 269 

(Swiss 

standard) 

 

A normal distribution 𝑓𝐷𝑙𝑖𝑘𝑒  was fitted to 

the likelihood damage and the resultant mean, and 

the standard deviation is calculated.  

The likelihood damage distribution for the 

instrumented rebar is plotted in Figure 3.  

Based on Bayesian updating theory, the 

posterior damage distribution 𝑓𝐷𝑝𝑜𝑠𝑡  can be 

updated as: 

𝑓𝐷𝑝𝑜𝑠𝑡 (𝑑𝑝𝑜𝑠𝑡) =
𝑓𝐷𝑝𝑟𝑖𝑜𝑟 

(𝑑𝑝𝑟𝑖𝑜𝑟) .  𝑓𝐷𝑙𝑖𝑘𝑒 
(𝑑𝑙𝑖𝑘𝑒)

𝑐
    (11) 

where 𝑐 is a constant ensuring the integral of the 

posterior density function equals 1.0, and 𝑑 is the 

realization of (prior, likelihood or posterior) 

damage.  

The posterior damage also has a normal 

distribution. The mean and standard deviation of 

the posterior model are identified accordingly. 

The normalized probability density function of 

the prior and the posterior damages and the 

likelihood are presented in Figure 3. The posterior 

damage follows the same shape of the likelihood, 

and it is far away from the prior damage. 

Therefore, the information provided by the 

likelihood is considered in the rest of the study as 

being the posterior information.  

 
Figure 3. Fatigue damage distribution (prior, 

likelihood, and posterior) 

 

The limit state function for the posterior model of 

a component 𝑗  is written as: 

𝑔𝑗(𝑡) =  𝛥 − ∑
𝑛𝑖,𝑗𝑡(𝐸(𝛥𝜀𝑖,𝑗+𝑀𝜀))

𝑚 

10ɛ+𝑙𝑜𝑔𝑘𝛥𝜎𝑖,𝑗>Δσs,D         (12) 

Probability of failure of the system 

The system fatigue failure of the viaduct is 

modeled. The viaduct system is of series type with 

different subsystems. The system failure is 

dominated by the weakest subsystem, which is the 

slender slab of 17cm thickness. From monitoring 

data, the cyclic stresses recorded in the transverse 

cross section were two times higher than in the 

longitudinal section. Therefore, the fatigue failure 

of the viaduct is assumed equal to the fatigue 

failure of the cross-section of the reinforced-

concrete slab.   

Herwig (2008), Johanssor (2004), and 

Schläfli and Brühwiler (1997) have shown that the 

fatigue failure of the reinforced concrete slabs is 

due to the failure of the rebars. The fracture of an 

isolated rebar (inside the concrete) may be 

considered as brittle; however, with the 

distributed reinforcement (254 rebars for the case 

of study), the failure of the cross-section has the 

potential for fatigue ductile behavior (Herwig, 

2008). Consequently, the slab is modelled as a 

ductile Daniels system consisting of 254 

components. The limit state function for the 

system is then presented in Eq. 13: 

𝑔𝑠𝑦𝑠(t) = ∑  (𝛥254
𝑗=1 − 𝐷𝑗(𝑡))                         (13) 
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Monitoring data is available for the most 

loaded rebar located at mid-span. The distribution 

of the strain in all the rebars is taken from the 

finite element model of the structure. Fatigue 

stresses decrease linearly with a factor of 

0.0008/rebar when moving from mid-span toward 

the box girders. The stress of each rebar 𝑗 is then 

calculated according to Eq. 14: 

      𝛥𝜎𝑖,𝑗 = (1 − (𝑗 − 1) ∗ 0.0008) ∗ 𝛥𝜎𝑖,1        (14)                                                       

where 𝛥𝜎𝑖,𝑗 is the stress range 𝑖 of the rebar 𝑗, 

and 𝛥𝜎𝑖,1 corresponds to the stress range 𝑖 of the 

instrumented rebar 1. The cumulative probability 

of failure of the system is equal to: 

    𝑃(𝐹𝑆(𝑡)) = 𝑃(𝑔𝑠𝑦𝑠(𝑡) ≤ 0)                              (15) 

It is calculated using both the prior and posterior 

models. The prior and posterior cumulative 

probabilities of the system failure are shown as:  

 
Figure 4. Prior cumulative probability of system 

failure 

 
Figure 5. Posterior cumulative probability of system 

failure 

The probability of failure calculated based on 

monitoring data is small, even after amplifying 

the loads by a factor of four, and assuming that the 

past traffic was similar to the present traffic. The 

heavy trucks are not frequent on the viaduct, and 

the slab is well reinforced, which explains the 

low-recorded strain values and the small 

probability of failure. 

 After 60 years of service, the prior 

probability failure is 0.172. According to the 

JCSS (2006), the target probability of failure is 

chosen as 5 × 10 −4 for the existing bridge as the 

relative costs for safety measures are large and the 

consequences of failure are moderate. For the case 

study, the target probability of failure is exceeded 

according to the prior model but not reached for 

the posterior model.  

CONDITIONAL VALUE OF SAMPLE 

INFORMATION ANALYSIS 

The viaduct manager has to make decision about 

which action to take depending on the states of the 

viaduct namely to do nothing or to replace. The 

viaduct manager can reach the decision based on 

the minimum expected costs without additional 

information, which is modelled with a prior 

decision analysis or by considering the already 

obtained additional information. The latter 

decision can be modeled with a posterior decision 

analysis. With the difference of minimum 

expected costs for both cases (with and without 

additional information) and with the consideration 

uncertainties related to the additional information, 

a conditional value of sample information can be 

calculated (CSVI according Raiffa and Schlaifer 

(1961)). 

The decision process can be described as 

shown in Figure 6 with 𝑎𝑖 denoting the choice of 

the actions. 𝜃𝑖 is the viaduct states which can be 

safe or failure. 𝑒𝑖  represent the different 

information of strategies. 𝑧𝑖 is the outcome of the 

strategies. In this case, the information of 𝑧1, no 

fatigue problem, is obtained after monitoring. We 

use  𝑢𝑖  to present the expected utilities regards 

different actions under different strategy 

information, which is calculated by multiplying 
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the probabilities and the consequences. Here we 

only consider the cost, so that the choice of action 

is performed based on the minimized expected 

costs. 

 
Figure 6. Illustration of decision tree 

 

The conditional value of sample information is 

calculated as: 

𝐶𝑉𝑆𝐼 = 𝑢0 − 𝑢1|𝑧1                          (16) 

𝑢1|𝑧1 = 𝑚𝑖𝑛[𝑢1|𝑧1,𝑎0; 𝑢1|𝑧1,𝑎1]                 (17) 

𝑢0 = 𝑚𝑖𝑛[𝑢0|𝑎0; 𝑢0|𝑎1]                     (18) 

𝑟(𝐹𝑆(𝑡)) =  
𝑑𝑃(𝐹𝑆(𝑡))/𝑑𝑡

1−𝑃(𝐹𝑆(𝑡))
                     (19) 

𝑢1|𝑧1,𝑎0 = ∑ 𝑟 (𝐹𝑆(𝑡)|𝑍1𝑡𝑚
)𝐶𝐹

1

(1+𝛾)𝑡
+ 𝐶𝑀

𝑇𝑆𝐿
𝑡=1                      

(20) 

𝑢1|𝑧1,𝑎1 = ∑ 𝑟 (𝐹𝑆(𝑡)|𝑅𝑡𝑚, 𝑍1𝑡𝑚
)𝐶𝐹

1

(1+𝛾)𝑡
+

𝑇𝑆𝐿
𝑡=1

𝐶𝑀 + 𝐶𝑅                                                                 (21) 

𝑢0|𝑎0 = ∑ 𝑟(𝐹𝑆(𝑡) )𝐶𝐹
1

(1+𝛾)𝑡
𝑇𝑆𝐿
𝑡=1                 (22) 

𝑢0|𝑎1 = ∑ 𝑟(𝐹𝑆(𝑡)|𝑅𝑡𝑚)𝐶𝐹
1

(1+𝛾)𝑡
+ 𝐶𝑅

𝑇𝑆𝐿
𝑡=1         (23) 

𝑟(𝐹𝑆(𝑡))  is the prior annual probability of 

failure. 𝑟 (𝐹𝑆(𝑡)|𝑍1𝑡𝑚
)  is the posterior annual 

probability of failure given indication of no 

fatigue after monitoring. 𝑟(𝐹𝑆(𝑡)|𝑅𝑡𝑚)  is the 

annual probability of failure after replacing the 

viaduct at year 𝑡𝑚  based on prior knowledge. 

𝑟 (𝐹𝑆(𝑡)|𝑅𝑡𝑚, 𝑍1𝑡𝑚
)  is the annual probability of 

failure after obtaining the indication of no fatigue 

information and replacing the viaduct at year 𝑡𝑚. 

In this case 𝑡𝑚 = 60  year and service life        

𝑇𝑆𝐿 = 120 years. The replacement would result in 

a new viaduct. 

 The cost model is shown in Table 4. Since the 

height of the viaduct is from 2 to 7 meters, it can 

lead rarely to death in the case of failure. 

Considering the extreme case, the cost of failure 

is assumed to be equal to the cost of one person's 

life due to the collapse of the viaduct given in the 

Swiss Standards. 

 
Table 4. Cost model 

Cost Categories Value  Reference 

CR New structure 

(Replace) 

5.5 

MCHF 

Assumed 

CM Monitoring (for 

one year) 

40 kCHF Real case 

study 

CF Cost of failure 10 MCHF SIA 269 

   𝛾 Discounting 

factor 

0.02 Higuchi(2008) 

 

Based on Eq. 16-23 and Table 4, the calculation 

of utilities results is shown as: 

 
Figure 7. Decision tree with expected utilities 

 

In Figure 7 it is shown that, without the 

structural health monitoring data, i.e. only with 

information provided by re-calculations based on 

codes, the viaduct has a very high probability of 

fatigue failure. Due to the associated high and 

unacceptable risks, the viaduct would be required 

to be replaced (action 𝑎1). With monitoring data, 

action 𝑎0 (do nothing) would be preferable due to 

the lower expected utilities. Thus, the Conditional 

Value of Sample Information is 1.4 MCHF, which 

means that by spending 40 kCHF money for 

monitoring, 1.4 million CHF of the cost is saved 

while keeping the viaduct in service. 

𝑍1: No fatigue

𝑒0: No SHM

𝑒1: SHM

𝑢0

𝑢0|𝑎0

𝑢1| 1

𝑎0: Doing Nothing

𝑎1: Replace

𝑎0: Doing Nothing

𝑎1: Replace

𝜃1     

𝜃2        

𝜃2        

𝜃2        

𝜃2        

𝜃1     

𝜃1     

𝜃1     

𝑢1

𝑢1| 1,𝑎0

𝑢1| 1,𝑎1

𝑢0|𝑎1

𝑍1: No fatigue

𝑒0: No SHM

𝑒1: SHM

𝑢0 = 1,44E+06 

𝑢0|𝑎0 =1,44 E+06 

𝑢1| 1 = 4,00E+04 

𝑎0: Doing Nothing

𝑎1: Replace

𝑎0: Doing Nothing

𝑎1: Replace

𝜃1     

𝜃2        

𝜃2        

𝜃2        

𝜃2        

𝜃1     

𝜃1     

𝜃1     

𝑢1

𝑢1| 1,𝑎0 =4,00E+04 

𝑢1| 1,𝑎1 =5,54E+06 

𝑢0|𝑎1 =6,31 E+06 

𝐶𝑆𝑉𝐼 = 1,40E+06 
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CONCLUSIONS 

The presented case study shows that the 

monitoring approach is found to give valuable 

information about the evaluation of the fatigue 

safety of the viaduct. The results show that there 

is no fatigue problem in the viaduct even by 

amplifying the monitored fatigue stresses 

arbitrarily by a factor of 4.  

Through quantifying the conditional value of 

SHM information for this viaduct, by modeling 

the fatigue failure of the cross reinforced-concrete 

slab as a system failure, it is found that the money 

has been saved, the risk can be reduced and that 

the viaduct can operate much longer. It is 

demonstrated how SHM information can be 

utilized to support the optimal decision for a 

continuous monitoring, by integrating sound 

scientific structural models, SHM engineering 

models and cost and consequence models. 

The SHM results indicate a significant bias 

of the model uncertainty in the design models. 

This indication may be used to derive models for 

value of information analyses with not yet 

obtained SHM information in order to predict for 

which bridges a SHM analysis may be valuable. 

This would support a quantitative decision basis 

for the owner based on an optimization of the time 

and money for keeping bridges reliably fulfilling 

their functions and being safe for users. 
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a b s t r a c t

The use of load and structural performance measurement information is vital for efficient structural
integrity management and for the cost of energy production with Offshore Wind Turbines (OWTs). OWTs
are dynamically sensitive structures subject to an interaction with a control unit exposed to repeated
cyclic wind and wave loads causing deterioration and fatigue. This study focuses on the quantification of
the value of structural and environmental information on the integrity management of OWT structures,
with the focus on fatigue of welded joints. By utilizing decision analysis, structural reliability methods,
measurement data, as well as the cost-benefit models, a Value of Information (VoI) analysis can be
performed to quantify the most beneficial measurement strategy. The VoI assessment is demonstrated
for the integrity management of a butt welded joint of a monopile support structure for a 3 MW OWT
with a hub height of approximately 71m. The conditional value of three-year measured oceanographic
information and one-year strain monitoring information is quantified posteriori in conjunction with an
inspection and repair planning. This paper provides insights on how much benefits can be achieved
through structural and environmental information, with practical relevance on reliability-based main-
tenance of OWT structures.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Offshore wind is a rapidly growing industry and to achieve
reduction of operational costs of OffshoreWind Turbines (OWTs), it
is important to choose optimal maintenance strategies to be
implemented on the turbine components [1]. Applications of
Structural Health Monitoring (SHM) for the design and mainte-
nance of OWT structures have gained much attention within the
past few years to detect and diagnose abnormalities of windturbine
components, see e.g. Ref. [2e5]. Being exposed to repeated cyclic

wind and wave loads, OWTs are dynamically sensitive structures
and can benefit from monitoring systems. Implementing SHM in
offshore wind energy support structures can help to investigate
uncertainties in design, provide input for the verification of oper-
ational conditions and possible future design optimization, predict
time-dependent deterioration for maintenance planning with the
aim of reducing operations and maintenance costs and possible
lifetime extension to achieve longer energy generation in the future
while fulfilling the requirement of reliability, functionality and
sustainability [6].

An OWT includes the Rotor and Nacelle Assembly (RNA), tower,
substructure and foundations which e.g. can be a jacket/tripod with
piles or bukets, monopiles, mono buckets, gravity bases or moored
floaters. Up to now, the most commonly used OWT foundations are
monopiles [7]. For the different components of the wind turbine
different SHM techniques can be applied, see Ref. [8,9]. For example
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for monitoring the condition of the drivetrain, oil condition
monitoring, acoustic emission, theomography, electromagnetical-
parameter based monitoring and holistic or global condition
monitoring are under research. For monitoring the rotor blades,
vibration-based SHM, acoustic emissions, strain measurement and
deflection based methods are under development. Sensor types for
monitoring offshore support structures includes strain gauges,
optical fibre sensors, temperature sensors, displacement sensors,
accelerometers, inclinometers, photometers and laser in-
terferometers. However, the techniques for blades and sub-
structures are still under development, they are not industry
practice yet. The operating and environmental conditions of
virtually all wind turbines in operation today are recorded by the
Supervisory Control And Data Acquisition (SCADA) system in 10-
min intervals [8]. The minimum data set typically includes 10
min-average values of: wind speed, wind direction, active power,
reactive power, ambient temperature, pitch angle and rotational
speed (rotor and/or generator).

In particular the research on SHM of offshore wind energy
support structures has been considerably intensified during recent
years. Among the key drivers for this is the requirement in the
standard from Bundesamt für Seeschifffahrt und Hydrographie
(BSH) in Germany that at least 1 out of 10 OWT support structures
must be equipped with a SHM system [8]. In this paper the focus is
on SHM of offshore wind energy monopile support structures.

Most SHM research focuses on obtaining measurement data,
extracting damage features, and deriving the damage indices e.g.
miners sum of fatigue damage, without an explicit further
consideration of the integrity management decision and action, see
e.g. Ref. [5,10]. The scope of this paper aims to fill the gap of
transforming the SHM data into knowledge that contributes to
decisions of structural integrity management. Besides, among all
the research related to SHM of OWTs, only few studies [11e14]
focus on quantification the value of SHM in offshore wind energy
support structures. The design of the SHM system is typically based
on experience and limited by the budget. When improper SHM
strategies are implemented, it may lead to big losses by obtaining
an enormous amount of irrelevant information with high data
processing costs that may trigger inappropriate remedial activities.
Thus, there is a need to quantify the value of SHM in offshore wind
energy support structures to improve the decision basis for
implementing SHM and provide insight on how to choose the most
beneficial measurement strategy. The information value-based
decision analysis can be a very useful tool for the decision
makers. Therefore, this paper focuses on the quantification of the
conditional value of strain and wind monitoring information for
maintenance of OWT monopile support structures, with emphasis
on fatigue of welded joints.

To identify and quantify the most beneficial measurement
strategy, a Value of Information (VoI) analysis is used, which is
based on the Bayesian pre-posterior decision theory presented in
Raiffa and Schlaifer (1961) [15] and Bayesian updating and utility-
based decision theory to quantify the utility increase due to addi-
tional information. The expected value of SHM information can be
found as the difference between the maximum utility obtained in
analysis with SHM information and the maximum utility obtained
without SHM information, considering the structural fatigue reli-
ability, inspection and repair planning as well as the cost-benefit
assessments. The utility increase, if additional information is
already obtained at the time of decision-making, is denoted as
Conditional Value of Sample Information (CSVI).

A similar proposed approach is used with great success for de-
cision making on inspection planning for fatigue critical details in
offshore structures [11,12] and the work presented in this paper is
an extension to application for offshore wind energy support

structures and is extended to include SHM in general. Through
quantifying the value of different SHM system information, the
optimal lifecycle maintenance planning can be determined, which
facilitates the reliability and safety in the assets management for
offshore wind energy support structures and in turn ensures a cost-
efficient energy generation for sustainable societal developments.

This paper starts describing the VoI methodology and the pro-
cess of quantification of the CSVI in Section 2, then Section 3 in-
troduces a probabilistic model based on monitoring data to
calculate the annual probability of failure, Section 4 describes the
method of updating the annual probability failure with the in-
spection event, and finally Section 5 introduces a cost model and
calculates the results of the conditional value of three monitoring
strategies. Furthermore a parametric analysis regards the cost
model is discussed in Section 6. The paper ends in Section 7 with
the conclusion.

2. Value of information analysis

As described in the introduction, since the strain and wind
monitoring information are already obtained at the time of
decision-making, this paper focuses on the quantification of the
conditional value of strain and wind monitoring information for
planning the maintenance of OWT monopile support structures,
with emphasis on fatigue of welded joints. Measurement of the
wind speed from the SCADA system andmonitoring information on
stress ranges from strain gauges were obtained on a butt welded
joint of the monopile support structure of a 3 MWOWT with a hub
height of approximately 71m. To quantify the conditional value of
the two types SHM information, a decision tree analysis is
introduced.

2.1. Decision tree description

A general decision tree for Bayesian decision making contains
five dimensions: information acquirement strategies e, outcomes of
strategies z, possible actions a, system states q and its conse-
quences. An illustration of the decision tree process is shown in
Fig. 1 with three branches: The base decision scenario is without
monitoring e0, one scenario with only wind monitoring informa-
tion e1 and one scenario with both wind and strain monitoring
information e2. With different monitoring strategies, the optimal
planing of the total inspection times NI and year tNI

will be
different. The outcome z describes the inspection outcome, e.g.
detection of a crack (D) or no detection of a crack (D), which is
denoted with a chance node (circle). The action a contains the
possible actions, like Do nothing (N) or Repair (R), which is repre-
sentedwith a rectangle. The system state q can be Failure (F) or Safe
(S). The consequence of failure of a welded joint is assumed to be
unscheduled repair, which is shown as a diamond. A decision rule is
introduced, which is shown by a dashed decision node (rectangle).
The dashed rectangle indicates inspections and repairs that will be
repeated during the service life. In this paper, the decision rules are:
if no detection of a crack, the action will be doing nothing, other-
wise repair is done immediately after detection of a crack. The
welded joints can only be repaired after inspection. The welded
joints need to be inspected if the annual probability of failure
reaches a certain threshold.

2.2. Conditional value of sample information calculation

The CSVI can be calculated by subtracting the expected total
costs of the base decision scenario e0 from the expected total costs
from the enhanced decision scenario with obtained wind
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monitoring e1 or both wind and strain information e2:

CVSIðeiÞ¼ E½CT ðe0Þ; TSL� � E½CT ðeiÞ; TSL� (1)

For each monitoring strategy ei, the decision tree will repeat its
branch for every inspection outcome. Assuming that in total that
there will be Nj branches (Nj types of combination of continous
inspection outcomes) until the end of service life TSL, each branch
has its probability of occurrence, PðjÞ. The expected total life cycle
costs E½CT ðeiÞ; TSL� of strategy ei are the sum of all branches of ex-
pected inspection costs E½CIðei; jÞ;TSL�, expected repair costs E½CRðei;
jÞ; TSL�, expected failure costs E½CF ðei; jÞ; TSL� during service life and
the monitoring costs CM when monitoring is applied.

E½CTðeiÞ;TSL�¼
XNj

j¼1
PðjÞ,ðE½CIðei;jÞ;TSL�þE½CRðei;jÞ;TSL�þE½CFðei;jÞ;TSL�

�ÞþCMðeiÞ
(2)

PðjÞ is the product of probabilities of continous inspection out-
comes during life cycle, e.g. the product of probability of detecting a
crack PD at each inspection year if damage is detected everytime
after inspection during the service life. For each branch the ex-
pected costs of inspection, repair and failure can be calculated as
follows [16,17]:

E½CIðei; jÞ; TSL� ¼
XNI;ei ;j

n¼1
CI ,

�
1� PF

�
tNI;ei ;j

��
,

1

ð1þ rÞtNI;ei ;j
(3)

E½CRðei; jÞ; TSL� ¼
XNR;ei ;j

n¼1
CR , PR

�
tNR;ei ;j

�
,
�
1� PF

�
tNR;ei ;j

�

�
�
,

1

ð1þ rÞÞtNR;ei ;j
(4)

E½CFðei; jÞ; TSL � ¼
XTSL

t¼1DPF;ei;j ðtÞ,CF,
1

ð1þ rÞÞt
(5)

r is the discounting rate. TSL is service life. NI;ei;j is the total number
of inspections with monitoring strategy ei in branch j. NR;ei ;j is the
total number of repairs with monitoring strategy ei in branch j. tNI;ei ;j

is the inspection year at NI inspection time with strategy ei in

branch j. PFðtNI;ei ;j
Þ is the accumulated probability of failure at in-

spection year tNI;ei ;j
: tNR;ei ;j

is the repair year at NR, denoting the
repair timewith strategy ei in branch j. PRðtNR;ei ;j

Þ is the probability of
repair at repair year tNR;ei ;j

which will be equal to PDðtNR;ei ;j
Þ as the

repair action will be taken immediately when the damage is
detected. PFðtNR;ei ;j

Þ is the accumulated probability of failure at
repair year tNR;ei ;j

: DPF;ei;j is the anaual probability of failure with
monitoring strategy ei in branch j. CI is the inspection cost per time,
CR is the repair cost per time, CF is the failure cost, which describes
the unscheduled repair cost in this paper.

In the following, Section 3 will first introduce how to calculate
PF and DPF based on probabilistic fatigue models integrated with
monitoring data, then Section 4 will present how to predict in-
spection year tNI

, the inspection times NI , how to simulate PD and
update the DPF from Section 3 based on inspection outcomes.
Finally Section 5 will introduce the cost model of CI , CR, CF , r and
present the CSVI results.

3. Probabilistic fatigue model

In this paper, the failure probability of the support structure is
first updated considering the SHM data in a stress-life (SeN)
approach and then considering the crack inspection data in a
fracture mechanics (FM) approach. The FMmodel is calibrated from
the posterior SeN model.

There are two types of monitoring information considered in the
calculation, representing two levels of SHM investment:

� Only the meteo-oceanographic data, i.e. wind speed, wave
height, wave period, etc.
� Both the meteo-oceanographic data and the strain data, where
the duration of concurrent measurement of the two types of
data is long enough to consider most of the important load
combinations, e.g. one year duration.

It is assumed that the SHM campaign is started from the
beginning of the service life. At the time of assessment, three years
of windmonitoring data and one year of strain data is available. The
strain data measured at the same timewith thewind data is used to
relate wind speed distribution to the fatigue damage in the limit
state function. If only the meteo-oceanogaphic data is available, the
stress data can be obtained from finite element analyses.

In this section, the methodology to consider SHM data is sum-
marized, a more detailed explanation can be found in Ref. [18].

Fig. 1. Decision tree of comparing beneficial measurement strategy regards to improve future inspection and repair planning.
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3.1. Bayesian updating of the wind speed distribution

The wind measurement data is used to update the long-term
wind speed distribution which in turn, is used in the limit state
function to calculate the updated failure probability. The prior
distribution of the long-termwind speed distribution is established
using the design wind speed distribution and 15-year data of the
10-min mean wind speed before construction.

The long-term wind speed distribution is assumed to follow a
Weibull distribution of which the scale parameter kw is considered
normally distributed with unknown mean m and unknown stan-
dard deviation s, see Eq. (6).

fKw
ðkwjm;sÞ¼ fNðkwjm;sÞ¼

1
s
ffiffiffiffiffiffi
2p
p exp

 
� 1
2

�
kw � m

s

�2
!

(6)

The new information is the estimated values of kw, obtained by
fitting the measured 10-min mean wind speed data of each year
into a Weibull distribution of which the shape parameter is the
same as the design value.

The predictive density function of kw given measured data be-
comes a Student’s t-distribution as shown in Eq. (7).

fKw

�
kwjbkwÞ¼ fs

�
kwjm’’; s’’

n’’þ 1
n’’

; n’’

�

¼
G
�
n’’þ1
2

�

s’’
ffiffiffiffiffiffiffiffi
n’’p
p

G
�
n’’
2

�
2
664
n’’þ

�
kw�m’’

s’’

�2

n’’

3
775
�n’’þ1

2

(7)

where:

� m’’, s’’, n’’, n’’ are the posterior parameters and m’, s’, n’, n’ are the
prior parameters of the expectation of mean ðE½m�Þ, the expec-
tation of the standard deviation ðE½s�Þ, the sample size ðnÞ, and
degrees of freedom ðnÞ, respectively.
� the prior parameters are asymptotically given as:
- E½m� ¼ m’

- E½s� ¼ s’
- V ½m� ¼ s’

m’
ffiffiffi
n’
p

- V ½s� ¼ 1
2n’

� The prior parameters of the Student’ t-distribution of kw are
established using the design wind speed distribution and the
15-year wind measurement data before construction:

- m’ ¼ kdesignw ¼ 10:4 (m/s)
- n’ ¼ 15, n’ ¼ 15� 1 ¼ 14
- to calculate s’, it is assumed that the coefficient of variation of
the mean value ðV ½m�Þ equals to that of the annual mean wind
speeds of the 15-year data: V ½m� ¼ 0:042, so that s’ ¼ V ½m�,
m’

ffiffiffiffi
n’
p

¼ 1:68
� the posterior parameters are calculated as following, using n
years of measurement data:

- n’’ ¼ n’þ n

- m’’ ¼ n’m’þnkw
n’’

- s’’2 ¼ n’s’2þn’m’2þns2þnk
2

w�n’’m’’2
n’’

- n’’ ¼ n’þ dðn’Þþ nþ dðnÞ� dðn’’Þ
� the statistical kw and s2 quantities are calculated for the vector of

the bkw - a vector of n components corresponding to n years of

wind measurement bkw ¼ ðbkw;1;
bkw;2; /; bkw;nÞ as following:

- kw ¼ 1
n
Pn

i¼1
bkw;i

- s2 ¼ 1
n�1

- n ¼ n� 1

Equation (7) is the probability density function of the random
variable kw in the limit state functions Eq. (8) and Eq. (11).

3.2. Probabilistic model for strategy e0

Before updating the long-term distribution of wind speed using
measurement data, the failure probability of a welded joint can be
calculated taking into account the predictive density function of kw
in Eq. (7). In this case, the posterior parameters (i.e. m’’, s’’, n’’, and
n’’) are equal to the prior parameters.

The limit state function is based on the Palmgren-Miner rule:

g¼D� Dtotal (8)

where D is the critical fatigue damage and Dtotal is total fatigue
damage summed up from each bin of wind speed and from each
year in the service life. The citical fatigue damage is the threshold to
justify when fatigue fracture happens. A lognormal distribution
with median equal 1.0 and CoV equals to 0.3 as proposed by
Wirsching [29] can be used to represent D. Given that the stress-
ranges obtained from measurement data correspond to the lower
branch of the bi-linear SeN curve, the limit state function in Eq. (8)
can be developed as:

g ¼ D�
XT
i¼1

XnU10

j¼1

�
af XmXSCF

�m2

K
km2
s;j G

 
m2

ls;j

þ 1

!
P
�
U10;j

��kw;i
	 nc;j
nm;j

n*m (9)

where:

T the service life in years.
nU10

number of bins of wind speed.
af the strain extrapolating factor from the measuring location to
the location of interest.
K the random variable represents the uncertainty in the SeN
curve, without having tested data established for specific
design and fabrication, a typical standard deviation slog K ¼ 0:2
is suggested by DNV-RP-C203 [19]. The mean value is calculated
from the charactristic value of the chosen SeN curve.
m2 the negative slope of the lower branch of the SeN curve.
Xm the random variable represents the uncertainty in strain
measurement, When there is no experimental data available for
a specific site, Th€ons [13] suggested to use a normal distribution
with mean of 1 and standard deviation of 0.05.
XSCF the randomvariable represents the uncertainty in the stress
concentration factor, This uncertainty depends on the
complexity of the joint and the method to calculate stress
concentration factor. In this paper, a lognormal distributionwith
mean of 1 and standard deviation of 0.15 is used, following the
background document to IEC 61400.1 ed 4 [20].
U10;j the 10-min mean wind speed in the jth bin.
kw;i the random variable represents the scale parameter of the
Weibull long-term wind speed distribution at the ith year.
ks;j the scale parameter of the Weibull stress-range distribution
of the jth bin of wind speed.
ls;j the shape parameter of the Weibull stress-range distribution
of the jth bin of wind speed.
nc;j number of stress cycles in the jth bin of wind speed.
nm;j number of wind speed records in the jth bin of wind speed.
n*m total observed wind speed records per year.
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Given the lower and upper bounds of the jth bin of wind speed
are aj and bj, PðU10;j

��kw;iÞ can be estimated as in Eq. (10), where FW
is the cumulative probability function of the Weibull distribution
and lw is the design shape parameter.

P
�
U10;j

��kw;i
	
¼ FW

�
aj�U10 < bj; kw;i; lw

	
¼ exp

 
�
 

aj
kw;i

!lw!

� exp

 
�
 

bj
kw;i

!lw!

(10)

The uncertainties used in Eq. (9) are detailed in Table 1:

3.3. Probabilistic model for strategy e1 and e2

Given Tm years of wind measurement, the fatigue damage of the
measurement years are known to be related to the fatigue loading.
The corresponding scale parameters kw;i in Eq. (9) should be treated
as deterministic, i.e. using directly the fitted values. The limit state
function in Eq. (9) can be rewritten as Eq. (11):

g ¼ D�
XTm
i¼1

�
Di

����bkw;i

�
�

XT
j¼Tmþ1

�
Dj
��kw;j

	
(11)

where.

bkw;i is the ith component of the vector bkw,
kw;j is the predicted value of kw at the year jth,
Di is fatigue damage of year ith, i ¼ 1/Tm, defined in Eq. (12):

Di ¼
PnU10

j¼1
ðaf XmXSCFÞm2

K km2
s;j G

�
m2
ls;j
þ 1

�
P
�
U10;j

��bkw;i
	 nc;j

nm;j
n*m (12)

Dj is the fatigue damage of year jth, j ¼ Tmþ 1/T , defined

similar to Di but use kw;j instead of bkw;i.

3.4. Annual probability of failure

The failure probability limit state function in Eqs. (9) and (11)
can be solved using a first order reliability method (FORM) as
well as simulation techniques, see e.g. Ref. [21]. The updated failure
probability after considering SHM is used to calibrate the FMmodel
inSection 4. Afterward, the updated failure probability of the FM
model is used with the cost model inSection 5. The annual failure
probability calculated hereafter is to be used in the cost model. The
annual failure probability of year t given survival up to year ðt�1Þ is
calculated as:

DPFðtÞ¼
PFðtÞ � PFðt � 1Þ
1� PFðt � 1Þ (13)

For the comparison of the VoI in this paper, failure probabilities

are calculated and updated for three scenarios:

� When wind and strain monitoring data is available (e2): the
stress-range distribution is fitted for each bin of wind speed to
get ls;j and the mean of ks;j,
� When only wind monitoring data is available (e1): the scale
parameters ks;j of the fitted stress-range distributions are scaled
to yield the design fatigue damage (in this case, it is assumed
that the joint is design to the limit).
� Without monitoring data (e0): the design wind speed distribu-
tion is used together with the stress-range distributions in e1.

Instead of modifying the fitted stress-range distributions in e0
for e1 and e2, it is possible to use the stress-range histograms
available from the design data (or perform finite element analyses
using the measured wind data) to fit the distribution for each bin of
wind speed.

The annual failure probabilities of the three cases are shown in
Fig. 2. It can be seen that using only three years of wind data, the
annual failure probability is not reduced as significantly as the case
where both wind and strain data is available. It means the
measured wind conditions are foreseen in the design wind speed
distribution and the design stress-range distribution is
conservative.

4. Updating the reliability based on inspections/repairs

In this section, the reliability of the welded joints is updated
based on the information gathered from inspections. First, a frac-
ture mechanics model is presented to quantify the deterioration
and is calibrated to match the reliability estimated in Section 3.
Then, an inspection model is introduced to quantify the measure-
ment quality. The reliability is updated thereafter based on the
inspection outcomes.

Table 1
Details of input random variables.

RVs Distribution Mean or Median CoV or Std. Comment

D Lognormal ~m ¼ 1 CoV¼ 0:3 following DNV-GL [19]
Xm Normal m ¼ 1 CoV¼ 0:05 following Th€ons [13]
XSCF Lognormal m ¼ 1 CoV¼ 0:15 following Sørensen [20]
K Lognormal mlog K ¼ 16:006 slog K ¼ 0:2 following DNV-GL [19]
ks;j Normal fitted CoV ¼ 0:1 assumed; fitted ls;j is deterministic

kw;i Student’s t updated updated lw;i ¼ lw;design

Fig. 2. Annual probability of failure.
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4.1. Fatigue deterioration - Fracture mechanics model

The deterioration of the structural component is estimated with
the use of a SN curve/Miner’s rule model during the design stage.
Nevertheless, it is not possible to measure damage directly on the
structure. Thus, a fracture mechanics model - which is calibrated to
match the reliability obtained with the SN curve model - is
preferred so as to quantify in-service deterioration. This way, the
reliability can be updated once a crack has (or has not) been
detected.

The linear elastic fracture mechanics (LEFM) model used in this
paper is based on the Paris’ law and has been derived from the
formula proposed by Ref. [22]. The crack depth as function of the
stress cycles can be computed according to Eq. (14).

aðnÞ¼
h�

1�m
2

�
Cpm=2SmYmnþ a1�m=2

0

ið1�m=2Þ�1
(14)

where, aðnÞ stands for the crack depth and is growing as function of
the number of cycles (n). C and m represent the crack growth pa-
rameters and depend on the material. The loading is incorporated
through the equivalent stress range S of themeasured stress-ranges
from section 3 and the geometric correction factor Y which can be
assumed to be a constant for simplification. The fatigue load un-
certainty Xm as mentioned in Table 1 is already considered in the SN
model, so it is implicitly included in the calibrated FMmodel. Thus,
once the initial crack size a0 is known, the crack growth over time
can be computed.

A limit state is formulated in Eq. (15) to estimate the reliability of
the welded joints. The failure criterion is assumed here as through-
thickness crack; thus, the critical crack size ac is defined as the plate
thickness. If the number of cycles per year is assumed constant, the
reliability can be computed for each year t.

gFMðtÞ¼ aðtÞ � ac (15)

The values assigned to the fracture mechanics model are listed
in the Table 2. Note that some parameters are calibrated to match
the SN model’s reliability.

4.1.1. Calibration of the fracture mechanics model
The initial crack size a0 and the crack growth parameter C are

calibrated to match the SN curve/Miner’s reliability. A least squares
optimization is conducted with the objective function Eq. (16) to
minimize the error between Miner’s and fracture mechanics
reliability.

fma0 ;mlnC ; slnCg ¼ argmin
ma0

;mlnC ;slnC

XtSL
t¼1
ð bSNðtÞ � bFMðt;ma0 ;mlnC ; slnCÞ Þ

2

(16)

The annual reliabilities from the calibration are illustrated in
Fig. 3 and the calibrated parameters are listed in Table 3. It can be
seen that while ma0 and slnC remain similar, mlnC varies for each case.

Since the reliability increased after the update considering both
strain and wind data, the resulting crack growth (mlnC) is smaller,
leading to a higher reliability than the other to cases. A similar
reasoning can be reached for the case when the update is only
carried out considering wind data, but in this instance, the crack
growth is slightly smaller than the base case.

4.2. Inspection quality - Probability of detection

During the operational life of the structure, knowledge can be
gained through inspections, updating the reliability of the struc-
tural component accordingly. Yet, inspections have uncertainty
associated as the measurement instrument is not perfect as well as
other environmental (or human) factors that can influence the final
outcome. This measurement uncertainty is commonly documented
by the Probability of Detection (PoD) curves. The PoDs represent
the ability of detection of a specific inspection method as function
of the defect size.

Eddy current inspection is an applicable inspection method for
an OWTwelded joint. Since, it is not required to remove the coating
before the inspection, it presents an advantage with respect to
magnetic particle inspection methods. In this paper, it is assumed
that eddy current inspections will be conducted and the corre-
sponding PoD curve is documented in the DNV-GL Standard RP-210
[23], as expressed in Eq. (17). Where a is again the crack depth and
the distribution parameters are defined as X0 ¼ 0:45mm and b ¼
0:9.

PoDðaÞ¼1� 1

1þ
�

a
X0

�b
(17)

Table 2
Fracture mechanics model parameters.

Variable Distribution Mean CoV

a0 Exponential *Calibrated e

m Deterministic 3 e

lnC Normal *Calibrated *Calibrated
S Deterministic 19:46 e

Y Deterministic 0:24 (Assumed) e

n Deterministic 2:41,107 e

Fig. 3. Calibration of the fracture mechanics model. The line in red colour represents
the base case e0, blue colour stands for the case where the reliability is updated
considering wind data e1, and green colour for the case when both wind and strain e2
are used for the updating. The dashed line corresponds to the target reliability. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Table 3
Calibrated parameters of the fracture mechanics model.

Parameter Base case (e0) Wind only (e1) Wind and strain (e2)

ma0 8:54,10�2 8:54,10�2 8:54,10�2

mlnC � 26:3 � 26:4 � 26:8
slnC 0:9 0:9 0:9
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4.3. Updating the reliability - Dynamic Bayesian Network

The reliability of the structural component is herein computed
and updated by means of a Dynamic Bayesian Network (DBN). A
DBN is a type of Bayesian network where the random variables and
their dependencies are represented through subsequent time steps.
DBNs are also denoted as Two-Timeslice Bayesian Networks (2TBN)
state-space because only the initial state and the transition space
are sufficient to define the whole model. The interested reader is
directed to Ref. [24,25] for a more detailed description and treat-
ment of DBNs.

The reliability could also be computed and updated by means of
Monte Carlo simulations, where a limit state is formulated for the
detection event to compute the failure probability conditional on
the detection outcome, as proposed by Ref. [22]. However, DBNs
have increasingly gained popularity due to their computational
benefits and robustness for Bayesian updating, as demonstrated by
Refs. [26].

The DBN employed herein is illustrated in Fig. 4. The chance
node a corresponds to the crack depth and it is dependent on the
crack growth node C. In case an inspection is performed, a node Z is
added and stands for the probability of detection, which is
dependent on the crack size distribution. Finally, the binary node E
assigns the failure probability depending on the last state of the
node a. The subscripts of the nodes indicate the temporal evolution
of the random variables: a0 and C stand for the initial crack depth
and crack growth parameter respectively, then, the random vari-
ables evolve fromyear 1 (t ¼ 1) until the end of the lifetime (t ¼ T).

4.3.1. Dynamic Bayesian network - Inference
In this investigation, inspections are planned based on the de-

cision rule of conduction an inspection the year before the target
reliability is reached. The target reliability defined by the Standard
IEC 61400e1:2019 [27] is selected as reference, with reliability
values of b ¼ 3:3 (DPF ¼ 5,10�4 with a one year reference period).
Besides, it is considered that a repair will be performed once a crack
is detected. After the repair, it is assumed that thewelded joints will
behave as a new joints following [30e32].

The reliability of the welded joints can be updated by including
evidence in the DBN. More specifically, evidence gathered through
inspections is included in the inspection nodes Z (Fig. 4). Once the
evidence is added, the probability distribution of the subsequent
nodes conditional on the inspection outcome can be inferred
through a prediction inference routine. Herein, the forward oper-
ation proposed by Ref. [26] is employed for the prediction task.

4.3.2. Inspection updating - Results
The reliability of the welded joints is computed and updated

according to the decision tree presented in Fig. 1 and by means of

the DBN introduced in Fig. 4. The annual failure probability for all
the different cases is displayed in Figs. 5e7. The inspections are
represented in the figures by pointers, if the outcome is ‘not-
detected’, the pointer is a circle and if the outcome is ‘detected’, the
pointer is an asterisk. The annual failure probability threshold is
plotted with a red line.

5. Quantification the conditional value of SHM information

Based on the results from Section 4, the prediction of the
number of inspections and inspection years will be different
whether with or without monitoring information. The summary is
shown in Table 4. tNI

is the inspection year of NI inspection times,
zNI

is the outcome of theNIth inspection time. The service life of the
OWT is assumed to be 20 years. Without monitoring (e0), the
welded joints of the monopile need to be inspected three times or
two times depending on the outcome of previous inspection as well
as whether the planned inspection year is within the service life or
not. With strategy e1, the predicted inspections times of the welded
joints will be the same namely three times or two times. But the
inspections can be done slightly later with e1 compared to e0.
However in strategy e2, when incorporating both wind and strain
monitoring data, the welded joints are only required to be
inspected one time during service life.

An example of a sequential decision tree which is describing the
inspection and repair plan of the base case e0 is shown in Fig. 8.
There are in total seven branches in the decision tree. The first in-
spection is at year 7. If a crack is detected after inspection at year 7
and repaired, the second inspection will be at year 14. If no crack is
detected at year 7, the second inspectionwill be at year 11. Based on
the outcome of the second inspection, the third inspection could be
at year 18 or 16. Similar to the sequential decision tree of the base
case e0, the decision tree of the case with only wind monitoring
data e1 will have five branches, with the first inspection at year 8,
second inspection at year 16 when a crack is detected and repaired
at year 8 or at year 12 if no crack is detected at year 8. If no crack is
detected at year 12, then the welded joints need a third inspection
at year 16. With both wind and strain monitoring e2, the welded
joints only need to be inspected one time at year 14. That’s because
the predicted annual failure probabilities from e2 information are
much smaller than those with e1 and e0 information, which leads
to a longer operation period before reaching the target probability
for the first inspection after commissioning of the structure.

Following the formula of quantification of the VoI in Section 2
and the costs model shown in Table 5 from Ref. [28], with the re-
sults of annual probability of failure in Section 3 and the results of
the probability of detection in Section 4, the value of the three
monitoring strategies are quantified. When the inspection cost CI is
V1104, repair cost CR is V8 104, failure costs CF (unexpected repair
costs) is V1.5 105, cost of wind monitoring Cw is V5 102 which only
accounts for the data processing fee due to the SCADA system
already being installed in the commissioning stage, cost of strain
monitoring Cs is V1 103 and discounting rate r is 0.02, the CVSI of
wind (e1) is V1.7 104 and the CVSI of wind and strain (e2) is V4.2
104.

By spending 0.9% of total service life costs of strategy e0 to
obtain first three-year wind monitoring information of e1, up to
30% of lifecycle management costs of e0 can be saved. Even though
there is a slight difference of inspection years between e0 and e1
(slightly later inspection years in e1), with e1 there will be a higher
chance of only inspecting two times during the service life while
with e0 it is more likely that there will be three inspections, which
leads to a positive CSVI of e1. By spending 2.6% of total costs of e0 to
acquire the wind monitoring data of the first three-year period and
one-year strain monitoring information in e2, up to 73% of life cycleFig. 4. Inspection updating - DBN representation.
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Fig. 5. Inspection updating - Base case.e0

Fig. 6. Inspection updating - Only wind case.e1
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management costs of e0 can be saved, due to the significantly
reduction of inspection times. Thus the combination of the strain
and wind monitoring strategy e2 is more beneficial than only the
wind monitoring strategy e1, and even more beneficial than
without monitoring e0 for this case.

6. Parametric analysis

With respect to cost of failure CF , inspection cost CI , repair cost
CR and discounting rate r, the parametric analysis on CVSI is
investigated. The results are shown in Fig. 9. With the increase of
cost of failure CF , the CVSI of e2 and e1 keep almost constant (a) and
the CVSI of e2 will always be higher than the CVSI of e1, showing
that the cost of failure will not influence the choice of CVSI. This is

because of the applied “target threshold” decision rule, which will
make the cost of failure not influence the number of inspection
times and year. With increase of the cost of inspection CI (b) and
cost of repair CR (c), the CVSI is increasing. However the difference
between e2 and e1 is becoming larger with the increase of the cost
of inspection CI . The CVSI is decreasing with the increase of the
discounting rate r as shown in (d). The CVSI of e2 is higher than the

Fig. 7. Inspection updating - Wind & strain case.e2

Table 4
Summary of the inspection plan for the three cases.

Base case (e0) Wind only (e1) Wind & strain
(e2)

NI ¼ 1 NI ¼ 2 NI ¼ 3 NI ¼ 1 NI ¼ 2 NI ¼ 3 NI ¼ 1

tNI
zNI

tNI
zNI

tNI
tNI

zNI
tNI

zNI
tNI

tNI
zNI

7 D7 14 D7;D14 23 8 D8 16 D8;D16 26 14 D14

D7 11 D7;D14 18 D8 12 D8;D16 21 D14

D7;D11 18 D8;D12 20

D7;D11 16 D8;D12 16

Fig. 8. Sequential decision tree of base case.e0.

Table 5
Summary of costs model.

CI CR CF Cw Cs r

V1 104 V8 104 V1.5 105 V5 102 V1 103 0.02
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CVSI of e1 when the discounting rate is less than 0.4. The difference
between the CVSI of e1 and e2 is becoming smaller with increasing
disconting rate. When the discounting rate is larger than 0.4, both
CVSI of e1 and e2 become around zero, which is because the money
becomes less valuable with higher discounting rate, so that it will
not add value to invest on monitoring at all.

From Fig. 9 (a)e(d), it can be seen that the CVSI of e2 is alomost
always higher than the CVSI of e1 with changes of CF , CR, CI and r,
which shows that the cost models will not change the fact that the
combination of the strain and wind monitoring strategy e2 is more
beneficial than only the wind monitoring strategy e1. It is however
dependent on the measurement outcome. In our case the one-year
strainmonitoring has shown smaller fatigue loads thanwhat can be
seen from three-year windmeasurements. The fatigue loads shown
from the three-year wind measurements appear slightly smaller
than what is expected from design. In this case the expected
number of inspection and repair times from e2 will be smaller than
e1 and the CVSI of e2 will be higher than e1.

7. Conclusions

Early research proposed different SHM techniques for the OWT,
recent studies have improved on that by suggesting methods to
quantify the value of SHM information. This work highlights that
the optimal monitoring strategy for offshore wind energy support
structures can be deterimined posteriori through conditional value
of structural and environmental information analysis. The appli-
cation on the quantification of the conditional value of three-year
measured oceanographic information and one-year strain moni-
toring information on a butt welded joint of a monopile support
structure of OWT shows that the combination of the strain and
wind monitoring strategy is more beneficial than only the wind
monitoring strategy, which is again better than without moni-
toring. However, this is based on the fact that the monitoring

results have shown smaller fatigue loads than expected from
design. Therefore for future research, the understanding of sce-
narios when the monitoring shows contrary results, e.g. strain
monitoring indicates larger fatigue loads than what can be seen
from the wind monitoring, will be critically important if aiming to
do pre-posterior decision analysis before implementaion of SHM.
This presented research work provides a decision basis for lifecycle
structural integrity management by quantifying the value of
structural and environmental information, with the ultimate goal
to contribute to cost-efficient and sustainable energy generation
through maintaining the reliability and serviceability of offshore
wind energy support structures.
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Abstract: The paper presents research results from the Marie Skłodowska-Curie Innovative 
Training Network INFRASTAR in the field of reliability approaches for decision-making for wind 
turbines and bridges. This paper addresses the application of Bayesian decision analysis for 
installation of heating systems in wind turbine blades in cases where an ice detection system is 
already installed in order to allow wind turbines to be placed close to highways. Generally, 
application of ice detection and heating systems for wind turbines is very relevant in cases where 
the wind turbines are planned to be placed close to urban areas and highways, where risks need to 
be considered due to icing events, which may lead to consequences including human fatality, 
functional disruptions, and/or economic losses. The risk of people being killed in a car passing on 
highways near a wind turbine due to blades parts or ice pieces being thrown away in cases of over-
icing is considered in this paper. The probability of being killed per kilometer and per year is 
considered for three cases: blade parts thrown away as a result of a partial or total failure of a blade, 
ice thrown away in two cases, i.e., of stopped wind turbines and of wind turbines in operation. Risks 
due to blade parts being thrown away cannot be avoided, since low strengths of material, 
maintenance or manufacturing errors, mechanical or electrical failures may result in failure of a 
blade or blade part. The blade (parts) thrown away from wind turbines in operation imply possible 
consequences/fatalities for people near the wind turbines, including in areas close to highways. 
Similar consequences are relevant for ice being thrown away from wind turbine blades during icing 
situations. In this paper, we examine the question as to whether it is valuable to put a heating system 
on the blades in addition to ice detection systems. This is especially interesting in countries with 
limited space for placing wind turbines; in addition, it is considered if higher power production can 
be obtained due to less downtime if a heating system is installed. 

Keywords: risk assessment; value of action analysis; icing conditions; wind turbine; blade; 
probability; highway 

 

1. Introduction 

Wind energy is one of the leading sources of renewable energy in Denmark and other countries. 
Wind energy is increasingly being used in cold climate locations [1] where icing can be a significant 
issue that should be taken into account in a risk assessment related to the area around wind turbines. 
An environmental impact assessment has to be performed, e.g., when it is planned to locate wind 
turbines in areas where people are living and in cases where it is planned to place wind turbines near 
a road or highway. Generally, the safety factors used for the design of wind turbines do not cover 
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such situations, since safety factors have been calibrated assuming that there is no or almost no risk 
of human fatalities in case of the failure of parts of a wind turbine. Ice accretion could have a direct 
impact on wind turbine operation, such as measurement errors, power losses, mechanical and 
electrical failures, and safety hazard problems [2]. Several investigations are ongoing in order to 
establish rules and guidelines related to icing. For instance, icing could affect the functionality of 
anemometers if they are unheated, see [3]. In Germany, wind turbines are not allowed to operate 
during icing situations, see [4]. Several reports are available showing that some wind turbines in 
Sweden during the 2002 and 2003 winters were forced to stop for seven weeks. Statistics from Sweden 
show that in winter months, 92% of full stops are caused because of icing [5]. In Germany, 85% of full 
stops of wind turbines in the mountains were caused by icing [6]. During the design stage, a 
functional ice detection system can be planned to be installed; subsequently, the wind turbine will be 
shut down if icing is detected by the ice detection systems. 

Most of the de-icing and anti-icing techniques used for wind turbines are inspired by the aviation 
industry; all these techniques can be classified into two types: passive and active. As an example, for 
passive techniques, ice-phobic and hydrophobic coatings can be used; furthermore, for active 
techniques, electrothermal blade heating, heating with microwaves, warm air heating can be applied. 
However, all of them have some disadvantages. These systems are generally unreliable, and therefore 
energy losses occur, and the effectiveness of the system decrease [2,7,8]. 

Ice detection systems are needed to make de-icing and anti-icing systems work. Double 
anemometer and vibration sensors are often used, as they are cheap; however, they have some weak 
points. For example, in double anemometers, since humidity is measured relatively, it may lead to 
an incorrect prediction of icing, which will then affect the wind turbine operation [9]. Another 
weakness point for double anemometers is related to the location of where they are installed; since 
icing is increasing with height, a double anemometer will always predict less icing compared to the 
amount of icing at the most critical location, especially when the turbine is parked [10]. Another 
shortcoming occurs due to increased measurement errors in case of low temperatures for unheated 
anemometers [11]. Furthermore, vibration sensors cannot detect icing during stall operation [10]. 
Optical sensors or video cameras seem more reliable than the aforementioned instruments, e.g., 
Remote Ice Detection Equipment (RIDE) [12]. 

In this paper, we consider whether it is worthwhile putting heating systems on the blades when 
there is the possibility of icing. Situations are considered in which an ice detection system is already 
installed. Different failure scenarios related to blade failures and icing will be presented in Section 2. 
In Section 3, risk assessment is described taking to account the distance of wind turbines to highways. 
Risk is estimated as the probability (per km and per year) that a person in a car will be hit (and killed) 
by ice pieces or parts of wind turbine blades. It is assumed that a row of wind turbines is placed along 
the highway. The risk is determined as a function of the distance from the wind turbines to the 
highway. Our results could provide decision-makers with a tool for deciding whether wind turbines 
should be placed near a highway and whether heating systems should be installed. This risk 
assessment and a case study are presented in Sections 3 and 4, and can be used as decision support 
for designers at sites with limited space and in which wind turbines need to be placed as close as 
possible to highways. In Section 5, the Value of Action approach is presented as the basis for 
quantifying whether it is worthwhile installing a heat detection system for wind turbine blades 
exposed to icing, and in Section 6, a case study is presented to illustrate the decision problem and 
how it can be solved. 

2. Failure Scenarios 

The following scenarios are considered in the assessment of risks for the surroundings of a wind 
turbine: 

(1) A part of a wind turbine blade or the whole blade may fail/collapse and be thrown away from 
the turbine; 

(2) Icing may occur when the wind turbine is in operation, and ice pieces may be thrown away; 
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(3) The wind turbine may be stopped in situations with icing, but ice pieces may be thrown away 
due to high wind speeds. 

The reasons for wind turbine blade failures may be the extremely low strength of the materials 
(within random variations of strength parameters), manufacturing errors, maintenance errors or 
extreme environmental conditions (within random variations of environmental parameters and 
accounting for the effect of the control system). Ice throw can be considered to be similar to a slingshot 
effect. Ice may be blown from the rotor blades in cases with strong wind when the wind turbine is 
parked or idling, or thrown away when the wind turbine is in operation. In a risk assessment, 
mechanical and electrical failures may lead to blade or blade fragment failures; fire and ice risks may 
be considered as similar events with the main difference between them in the risk assessment being 
related to their frequency of occurrence [13]. An icing event of a wind turbine near a highway is 
depicted in Figure 1.  

 
Figure 1. Icing in a wind turbine near a highway. 

A conservative rule suggested by Seifert states that the risk of ice-throw from an operational 
wind turbine has to be investigated for roads, paths or other objects of interest if the wind turbine is 
placed within the following distance from a road [3]: 

1.5∙(rotor diameter + hub height), (1) 

To determine the probability of adverse events in the affected area around the wind turbine, the 
following parameters should be considered [14]: 

• Hub height 
• Rotor diameter 
• Rotor revolution under icing conditions 
• Wind properties (distribution of wind speed and direction) 
• Ice fragment properties 

In [15], an icing model is proposed based on measurements in Germany. Some challenges were 
observed by this study for ice forecasting, such as the high sensitivity to parameters like liquid water 
content, droplets median diameter, wind, and temperature. 

Ice properties/ice pieces are often classified into four scenarios based on a study by TÜV [14]: 

• Rime ice, mass: 90 g (scenario A), and 240 g (scenario B); 
• Clear ice, mass: 70 g (scenario C) and 180 g (scenario D). 

Based on the TÜV study, which considered a typical wind turbine of 141 m hub height and 117 
m rotor diameter, scenario B and D are identified as scenarios that can cause fatalities, and in cases 
of 90 g rime ice (Scenario A) and 70 g clear ice (Scenario C), slight injuries might occur [14]. 

In another study, rime ice was classified into five cases [16]: (1) 0 to 0.5 kg/m, (2) 0.5 to 0.9 kg/m, 
(3) 0.9 to 1.6 kg/m, (4) 1.6 to 2.8 kg/m and (5) 2.8 to 5.0 kg/m, for which observations from wind 
turbines in Quebec showed that the second class could be dangerous [17].  
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In the WECO (Wind Energy Production in Cold Climate) project [18], the frequency of ice fall 
events is estimated based on observations from a wind turbine by counting ice pieces around a test 
site in Switzerland, where 200 ice falls over three winters were measured. 

3. Risk Assessment 

Risk has a variety of definitions, see, e.g., the glossary of the Society for Risk Analysis (SRA) [19]. 
The International Risk Governance Council (IRGC) refers to risk as an uncertain and severe 
consequence of an event or activity [20]. Zio [21] presented a quantitative definition of risk taking 
into consideration accident scenarios, consequences, uncertainty, and body of knowledge. In this 
paper, the approach by JCSS [22] is basically applied; here, risk is defined considering an activity with 𝑛 events, each with probabilities  𝑃௜ and with potential consequences 𝐶௜. The risk 𝑅 is defined as 
the sum of the products of the probabilities and the consequences [23]: 

𝑅 = ෍ 𝑃௜ ∙ 𝐶௜௡
௜ୀଵ  (2) 

In Figure 2, the process of risk-based decision analysis in this case study is shown. First, it is 
necessary to consider the scenarios in an icing event to determine the influencing parameters, e.g., 
ice can be thrown away from the wind turbine when it is operating, or ice can be thrown away from 
the stopped or idling wind turbine. Furthermore, it has to be included that the wind turbine blade 
parts can be thrown away because of the partial or total failure of the blades. Next, the model is linked 
to a car passing on a highway near the wind turbine, and its properties, such as speed and number 
of passengers. Afterward, it is necessary to take into account possible ice detection and blade heating 
systems. Subsequently, risk scenarios are identified by the concept above for calculating risk, and in 
parallel, sensitive parameters in the model are identified. The calculated risks are compared with the 
accepted risks, and, using the ALARP (As Low As Reasonably Practicable) principle, risks can be 
considered to be acceptable or not. This process can be expanded using information from SHM 
(Structural Health Monitoring). 
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Figure 2. Risk-based decision analysis in this case study. 

4. Case Study—Risk Assessment 

An example of risk assessment for wind turbines close to highways in Denmark is presented in 
this section, accounting for the risks mentioned above from falling parts from wind turbine blades in 
conditions of total or partial damage, as well as ice thrown from wind turbine blades in the case of 
icing. 

In [24], the occurrence of icing was divided into four conditions: heavy, moderate, light, and no 
icing; Denmark can be considered as a country with moderate icing conditions. It is presumed that a 
row of wind turbines is placed along a highway with a typical total height of 150 m and a spacing of 
500 m along the road. Data is collected from wind turbines both in Denmark and overseas [25]. 

The following assumptions are made [25]: 

• The average drag coefficient of ice pieces is assumed to be 0.6, the density of air is assumed at 
1.3 kg/m3 and that of ice is assumed to be 800 kg/m3; 

• Ice pieces need to be more than 2 cm in thickness in order to be thrown away without being split 
to smaller pieces on the way; 

• The mean speed of vehicles is assumed to 88 km/h on Danish highways (based on Danish road 
statistics); 
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• 1.5 people will die in the case of hitting parts (based on Danish road statistics, on average 1 or 2 
people usually sits in cars, the average is considered in this case study); 

• The probability of being killed when an ice piece or blade part hits a car is assumed to be one, 
since only large objects are considered; 

• The 10-min mean wind speeds, 𝜈௜, are assumed to discretized to 5, 10, 15, 20 and 25 m/s; 
• The area of a vehicle is assumed to be 10 m2, which is average for a passenger car; 
• Ice pieces larger than 3 mm are used with an occurrence rate of 0.175 times per year (in 

Denmark). This modeling is subject to considerable uncertainty, since the ice pieces can become 
larger on the blades because of wind speed or during blade rotation. 

In the following figures, models for each of the above three cases are derived based on the 
models described in [25], as well as ballistic calculations using the models in [26]. 

The probability (per km per year) that a car is hit by ice pieces, 𝑃஺, is estimated in icing conditions 
based on the following model [25]: 𝑃஺ = ෍ [ 1𝑉଴ఔ೔ୀହ,ଵ଴,ଵହ,ଶ଴,ଶହ 

1365 ∙   24 ∙   3600 න 𝑃௓(𝑠, 𝜈௜)𝐴(𝑠)𝑑𝑠 1𝐷]ௌ  𝑃(𝑉 = 𝜈௜) (3) 

where 𝑉଴ speed of the vehicle 
S length of road section considered 𝐴(𝑠) area of a car 
D spacing between the wind turbines placed along the highway 𝑃௓(𝑠, 𝜈௜)  probability (per km per year) that an ice piece lands in the distance s from the wind turbine 

if the mean wind speed is 𝜈௜. A uniform probability distribution is assumed within the 
throwing distance 𝑅௜  at the mean wind speed 𝜈௜ . Furthermore, using a uniform 
directional distribution of the wind speed, 𝑃௓(𝑠, 𝜈௜) is determined by 𝑃௓ (𝑠, 𝜈௜) = 𝜈 1𝑅௜ (4) 𝜈 number of icing events per year 𝑃(𝑉 = 𝜈௜) probability that the mean wind speed at hub height in connection with icing is equal to 𝜈௜. 

The risk, here introduced as the expected number of persons, 𝑅஺, per year per kilometer that 
will be killed by a wind turbine, is estimated by 𝑅஺ = 1.5 𝑃஺ 𝑃஽ (5) 

where it is conservatively assumed that the probability of being killed when an ice piece or blade part 
hits a vehicle is 𝑃஽ = 1. 

A similar equation is presented by [25] for the last scenario. 
Figure 3 shows 𝑅஺ for ice throw from an operational wind turbine as a function of distance (d) 

to a road (in m) with the tower height of 100 m and the total height of 150 m. Approximately, 𝑅஺,்ை = 5 ∙ 10ିଽ𝑒ି଴.଴ହ଴ ௗ (6) 



Energies 2019, 12, 2653 7 of 15 

 

 
Figure 3. The risk 𝑅஺,்ை per year per kilometer due to icing events as a function of distance to the 
road for wind turbines in parked position, from [25]. 

Figure 4 illustrates 𝑅஺ for an idling (parked) wind turbine as a function of distance (d) to a road 
(in m) with a tower height of 100 m and a total height of 150 m. Approximately 𝑅஺,்ூ = 2 ∙ 10ିଽ𝑒ି଴.଴଺଼ ௗ (7) 

 
Figure 4. The risk 𝑅஺,்ூ per year per kilometer due to icing events as function of distance to road for 
wind turbines in parked position, from [25]. 

Figure 5 shows 𝑅஺ due to total or partial failure/collapse of a wind turbine as a function of 
distance (d) to a road (in m), with a tower height of 100 m and a total height of 150 m. Approximately 𝑅஺,஻் = 5 ∙ 10ିଵଶ𝑒ି଴.଴଴ଽ ௗ (8) 
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Figure 5. The risk 𝑅஺,஻் per year per kilometer as function of distance to the road for blade parts 
thrown away from the wind turbine, from [25]. 

Based on these probabilistic models, the next section presents the basis for decision making and 
for estimating the Value of Action (VoA). The decision problem that will be considered is whether a 
heating system should be implemented, assuming that an ice detection system has already been 
established. This is done for different distances between the road and the row of wind turbines, and 
can be used as a basis for determining the acceptable distance to the highway using an ice detection 
system, and next, whether a heating system should be installed. 

5. Value of Action Analysis 

The concept of Value of Action (VoA) was introduced by Thöns and Kapoor, see [27,28], and 
constitutes a further development of the Value of Information (VoI) analysis from Raiffa and Schlaifer 
in [29] and its application in engineering, see e.g., [30–33]. The VoI is defined as the expected utilities 
gained by obtained (conditional) or predicted (expected) information, including their costs and 
consequences, while the VoA is different in that the expected utility is gained only on the basis of 
predicted or implemented actions. The quantification of VoA can be calculated as the difference 
between the expected utilities of the predicted action and a system state analysis. Based on 
quantification of VoA, it is possible to provide a decision basis as to whether to implement an action 
or not. To figure out whether it is beneficial to install the heating systems on the wind turbine blades 
following the risk assessment results above, a VoA analysis was carried out. 

As discussed above, when it is planned to locate a wind turbine location near to highways, one 
of the interests from owners’ perspectives is in reducing risk owing to falling parts from wind 
turbines in the event of total or partial damage, and from ice thrown from the wind turbines in the 
case of icing, as shown in Figure 6. The general objective is to ensure normal and steady energy 
generation, which can be achieved with additional investments in SHM techniques, such as 
implementing an ice detection system and a blade heating system. Initial investments in SHM 
techniques can increase the cost of the wind turbine. However, the shutdown of the wind turbine will 
result in loss of energy production, thus reducing the income of the owner or reputation loss. The 
major constraints regarding wind turbines close to highways are that falling parts from wind turbines 
may lead to a traffic accident, damage to cars, and even to the injury or fatality of people. To minimize 
the overall cost of wind turbine management, it is essential to decide whether to implement an ice 
detection system, and when to turn on the blade heating system. 
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Figure 6. Illustration of risk scenarios of wind turbines close to highways. 

A situation is considered in which the risks due to parts being thrown from failed/collapsed 
wind turbine blades are assumed to be difficult to reduce; therefore, only the reduction of risk due to 
icing can be reduced. It is assumed that an ice detection system has already been installed. The 
question is: is it worthwhile installing a heating system in the blades? When ice is detected, should 
the wind turbine be shut down directly, or should the ice heating system be turned on? The 
application of the value of action analysis with regard to the installation of heating systems in wind 
turbine blades in cases where an ice detection system has already been installed aims at answering 
the question as to whether it is of value putting a heating system on the blades. 

The illustration of the full decision tree is shown in Figure 7. The decision choice is ℎ଴, no heating 
system, or  ℎଵ, with the heating system. By installing the heating, there would be a heating system 
cost 𝐶ு. The decision choice of action will be 𝑎଴, do nothing, 𝑎ଵ, stop operating, and 𝑎ଶ, turn on the 
heating system; moreover, if operation stops, there will be a production loss 𝐶௅. Given the monitoring 
strategy 𝑒ଵ, with ice detection system, data of the ice mass will be collected, and when the mass of 
ice is over a certain threshold, a warning will be given. Two monitoring outcomes will be provided: 𝑧ଵ, indicating ice, and 𝑧ଶ, not indicating ice. For different choices of actions based on the monitoring 
outcomes, the wind turbine could be under different states; for example, 𝜃ଵ, safe state, 𝜃ଶ, at risk of 
blades being thrown away, 𝜃ଷ , at risk of ice being thrown away when the wind turbine is non-
operational, and 𝜃ସ, at risk of ice being thrown away when the wind turbine is operating. The owners’ 
decisions with respect to actions regarding the wind turbine are based on the indication of ice 
detection, and the consequences, benefits, and costs. The consequences of parts falling from wind 
turbines may include traffic accidents, damage of cars, and even the injury or fatality of people, 𝐶ி. 
The most important consequences related to whether a heating system is used or not are those which 
affect the risk of a person in a vehicle potentially being killed due to falling parts or ice pieces from a 
wind turbine. If a heating system has not been installed, downtimes can last several days or even 
weeks due to persistent ice on the blades [34]. Therefore, the production loss 𝐶௅  can range from 
hundreds to thousands of Euro. If a heating system is installed, the wind turbine can continue 
working with benefits 𝐵௅ per year. 
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Figure 7. Illustration of the full decision tree for risk assessment of the value of action in the 
framework of wind turbines close to highways. 

It is assumed that the ice detection system provides precise and accurate information. Therefore, 
if equipped with an ice heating system, when ice is detected, the choice of action could be to 𝑎ଶ, turn 
on the heating system. The wind turbine will continue working when the heating system is turned 
on, but there will be a cost for installation of the heating system 𝐶ு. The ice will melt after turning on 
the heating system, and the only risk left in this case will be the risk of blades being thrown away 𝑅஺,஻். If no ice heating system has been installed, when ice is detected, the choice of action could be 𝑎ଵ, stop operating; there will be a production loss during the downtime, but the risk of ice being 
thrown away under operation condition 𝑅஺,்ை  will be reduced. However, there is still the risk of ice 
being thrown away under no operation condition 𝑅஺,்ூ, as well as the risk of blades being thrown 
away 𝑅஺,஻் . If the ice detection system did not indicate ice, whether a heating system has been 
installed or not, the choice of action will be 𝑎଴, do nothing. An illustration of the choice of decision 
action scenario for wind turbines in icing events close to highways is shown in Figure 8. 

 
Figure 8. Illustration of the modeled decision scenario and utilized models. A dashed decision node 
(rectangle) stands for the use of a decision rule and a dashed chance node (circle) for the use of perfect 
information provided by the ice detection system. 
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Following the choice of decision scenario in Figure 9, when the ice detection system detects the 
ice, the choice of action when there is no ice heating system will be to stop operating, which leads to 
a utility 𝑢௛బ . The choice of action if the ice heating system is installed will be to turn on the heating, 
which results a utility 𝑢௛భ; the value of installing the heating system will be calculated as: 𝑉𝑜𝐴 = 𝑢௛భ − 𝑢௛బ  (9) 

It is assumed that when the ice heating system is turned on, the ice will melt, and if the ice is 
thrown away, the risks under both operation and non-operation will be significantly reduced, leaving 
only the risk of blades thrown away 𝑅஺,஻்  remaining, so that, considering the service life 𝑇ௌ௅, the 
cost of the heating system 𝐶ு, the cost of possible fatality 𝐶ி  and the benefits of production 𝐵௅, the 
spacing between wind turbines placed along a highway 𝐷, and discounting factor 𝛾, the utility of 
the heating system 𝑢௛భ  can be obtained by adding the contributions from each year 𝑇: 𝑢௛భ = ∑ ൫1 − 𝑃஺,஻் ∙ ∆𝑇஻்൯ 𝐷 𝐵௅ ଵ(ଵାఊ)೅ೄ்ಽ்ୀଵ − ∑ ൫𝑅஺,஻் 𝐷 𝐶ி + 𝑃஺,஻் 𝐷 𝐵௅ ∆𝑇஻்൯ ଵ(ଵାఊ)೅ೄ்ಽ்ୀଵ − 𝐶ு    (10) 

Here, the ratio of downtime per year in which the wind turbine will be stopped ∆𝑇஻் for blade repair 
if blade has been thrown away is assumed. 

When there is no ice heating system, and the wind turbine stops operating, given the ice 
detection warning, the risk of consequences of ice being thrown away under operation will be 
reduced, and the remaining risk will be of ice being thrown away under non-operation 𝑅஺,்ூ and the 
risk of blades being thrown away 𝑅஺,஻். Considering the production loss 𝐶௅ during this period, the 
number of icings per year ν, and the ratio of down time per year due to icing ∆𝑇௜௖௘, the utility of stop 
operation 𝑢௛బ will be: 

𝑢௛బ = ෍൫1 − 𝑃஺,்ூ ∆𝑇௜௖௘ − 𝑃஺,஻் ∆𝑇஻்൯ 𝐷 𝐵௅  1(1 + 𝛾)்
்ೄಽ
்ୀଵ − ෍ ቀ൫𝑅஺,்ூ+𝑅஺,஻்൯ 𝐷  𝐶ி + 𝑃஺,஻் 𝐷 𝐵௅ ∆𝑇஻் + 𝜈 𝐶௅ ∆𝑇௜௖௘ቁ 1(1 + 𝛾)்

்ೄಽ
்ୀଵ  

(11) 

The estimate of the benefits of production 𝐵௅ (𝐶௅ =  𝐵௅ ) per year is based on [35]: 𝐵௅ = 𝑃  𝐴  𝑓  ( 𝑆 +  𝑎) 365 ∙ 24 (12) 

where 𝑃 is the rated power of the machine MW, 𝐴 is the turbine availability factor, 𝑓 is the capacity 
factor, 𝑆 is the sales price of electricity kW/h and 𝑎 is the feed-in-tariff. 

6. Case Study—Value of Action Analysis 

The summary of the probability (per km) that a car will be hit by ice or a blade thrown away, as 
well as the costs and benefits analysis parameters, are shown in Tables 1 and 2, respectively. Table 2 
is from [35]; the power of the wind turbine is 3.6 MW, a capacity factor of 0.45 is assumed, turbine 
availability factor is 0.95, feed-in-tariff is €0.12/kWh, with a rough electricity price of €0.3/kWh, so 
that there will be 5.66∙ 10଺ Euro per year of production benefit. The total costs of the wind turbine 𝐶ூ is €2 ∙ 10଻. The discounting factor 𝛾 is 0.05. The cost of heating 𝐶ு  is assumed to be on the order 
of 5% of the total costs of the wind turbine, considering the equipment costs, installation costs and 
energy consumption costs [34], which are assumed to be 10଺  Euro. The fatality costs of 1.5 person 
in a vehicle being killed are assumed to be  3 ∙ 10଺  Euro, based on [36]. 

Table 1. Summary of probability (per km) that a car will be hit by ice or blade thrown away. 

Remark Parameter Equation 
The probability (per km) that a car is hit by ice pieces due to ice thrown from an 
operational wind turbine as a function of distance d to a highway 

𝑃஺,்ை 𝑃஺,்ை = 3.33∙10−9 𝑒ି଴.଴଴ହ ௗ 
The probability (per km) that a car is hit by ice pieces due to ice thrown from an 
idling wind turbine as a function of distance d to a highway 

𝑃஺,்ூ 𝑃஺,்ூ = 1.33∙10−9 𝑒ି଴.଴଺଼ ௗ 
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The probability (per km) that a car is hit by total or partial failure/collapse of a 
wind turbine blade as a function of distance d to a highway 

𝑃஺,஻் 𝑃஺,஻் = 3.33∙10−12 𝑒ି଴.଴଴ଽௗ 
Table 2. Summary of costs and benefits analysis parameters. 

Parameter and Remark Value Parameter and Remark Value 𝐶ி Cost of fatality for 1.5 person €3 ∙ 10଺ 𝑃 Power of wind turbine  3.6 MW 𝐶ு Cost of the heating system €1∙ 106 A Turbine availability factor 0.95 𝛾 Discounting factor 0.05 𝑓 Capacity availability factor 0.45 𝑇ௌ௅ service life 20 years 𝑆 Electricity price: Euro per-kWh €0.3/kWh ν Number of icings per year 0.175 𝑎 feed-in-tariff €0.12/kWh 

D spacing between wind turbines  500 m ∆𝑇஻் down time due to blade repair if blade 
thrown away 

1 year 

Following Equations (8)–(12) and Tables 1 and 2, the computational results of VoA are shown in 
Figure 10. When VoA < 0, it means that it is not worthwhile installing the heating system. When VoA 
> 0, it is recommended that the heating system be installed. Based on Figure 9a, the VoA will increase 
with the increase in downtime, which means that it will be more beneficial to install the heating 
system if the downtime due to icing on the blades is longer. However, the impact of the distance of 
the wind turbine from a highway d is comparably small, which can be explained by the low variation 
of risk model independence of distance in Section 5. The critical downtime in the case study when 
VoA = 0 is at ∆𝑇 = 30 days, as shown in Figure 9b. Therefore, if the down time due to ice on the 
blades is less than 30 days, it is beneficial to just shut down the wind turbine instead of installing a 
heating system. If the downtime is longer than 30 days, it is worthwhile installing the ice heating 
system on the blades. 

 

(a) 

 

(b) 

Figure 9. Computational results of VoA in dependence of percentage of downtime per year due to 
icing ∆𝑇 and distance of wind turbine to a highway d (a) and VoA with critical down time point 
when VoA = 0 (b). 

To investigate how the model factors, for example, the power of the wind turbine 𝑃 , the 
electricity price 𝑆 , the cost of the heating system 𝐶ு , the number of icings per year ν, and the 
influence the choice of action, a parametric analysis is carried out. The results are shown in Figure 10. 
If the down time is the same, based on Figure 10a, the higher the power of wind turbine 𝑃 is, the 
higher the VoA will be, which means that it will be more beneficial to install a heating system on 
larger wind turbines. The same trend goes for the electricity sales price 𝑆 in Figure 10b; it is more 
beneficial to install the heating system when the electricity sales price is high. This also applies to the 
number of icings per year, ν, in Figure 10c; it is more worthwhile installing a heating system when 
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icing per year is greater. Meanwhile, in Figure 10d, the higher the cost of the heating system, 𝐶ு, is, 
the smaller the benefit of VoA will be. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Parametric analysis regarding Value of Action (VoA) with respect to the power of the wind 
turbine (a), electricity price (b), cost of the heating system (c), and number of icings per year (d). 

7. Conclusions 

A probabilistic model and a risk assessment model are described for the assessing the 
consequences related to icing and the associated risk of ice pieces being thrown away from a wind 
turbine and potentially hitting a vehicle on a road near the wind turbine. In addition, the risk from 
blades and parts of blades being thrown away from a wind turbine in case of blade failures also needs 
to be accounted in the risk assessment. This paper considers the application of Bayesian decision 
analysis for decision-making with respect to the installation of heating systems in wind turbine blades 
in cases where ice detection systems have already been installed in order to allow wind turbines to 
be placed close to highways. 

Furthermore, the application of Value of Action (VoA) is presented for the decision problem 
related to installation of a heating system in situations where an ice detection system is already 
available. Decision trees for the VoA are developed, together with the corresponding utility functions, 
making it possible to quantify whether it is valuable to put a heating system on the blades in addition 
to the ice detection systems. This is especially interesting in countries with limited space for placing 
wind turbines. The model makes it possible to investigate, e.g., whether higher power production 
can be obtained with less downtime when a heating system is installed. 

An illustrative case study is considered, presenting the details of the risk modelling and the 
Value of Action. Risk is calculated as a function of distance from the wind turbines to the highways. 
The risk owing to ice throw in operation mode is slightly higher than in the parked position. The 
spacing between the wind turbines and the height of them did not have a major impact. 



Energies 2019, 12, 2653 14 of 15 

 

The case study with regard to quantification of the Value of Action on wind turbines close to 
highways with respect to icing events provides a general decision basis for deciding whether or not 
to install ice heating systems given the condition that ice detection systems have already been 
installed. The results show that the decision result is highly dependent on the duration of downtime 
due to ice on the blades. 
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CHAPTER 8. SUMMARY, CONCLUSION 

AND OUTLOOK 

8.1. SUMMARY 

This thesis contains a methodological summary on SHM, VoI, Bayesian decision 

theory, detection theory, reliability analysis, structural integrity management and 

utility modelling for deteriorated structures in chapter 2. Conceptual and applied 

research for the quantification of the value of monitoring information based on a 

methodological basis with integration of probabilistic structural models, SHM 

models, cost, and benefit models as well as consequence models have been further 

developed in chapter 3 to 7 (Paper 1 to 5). Chapter 3 to 7 follow the methodologies of 

chapter 2 but with more details and different emphasizing aspects: 

• The pre-posterior decision analysis is addressed in chapter 3 (Paper 1), the 

posterior decision analysis is illustrated in chapter 4 (Paper 2).  

• The conditional value of sample information analysis is presented in Chapter 

5 (Paper 3) and 6 (Paper 4). The value of action analysis is developed in 

chapter 7 (Paper 5).  

• The discussions of influence parameters on the probability of damage and 

influence of structural performance parameters are addressed in chapter 3 

(Paper 1), the consideration of the influence of utility modelling parameters 

is discussed in chapter 4 (Paper 2) and 6 (Paper 4).  

• The Bayesian updating with observed events is described in chapter 5 and 

the Bayesian updating of observed stochastic variables is presented in 

chapter 6 (Paper 4). 

With this thesis a framework for the determination of optimal monitoring strategies is 

established. This framework facilitates a consistent and comprehensive formulation 

of quantifying the value of SHM information encompassing: 

• Development of an approach to account for damage detection information 

by building upon the approaches of NDT/NDE reliability. 

• Provision the basis for reliability modelling of damage detection 

information encompassing precision of sensors, amplifiers, 

environmental noise, and the damage detection algorithm precision.  

• Facilitation of information value by risk reduction related to structure 

failure, expected cost reduction for the structural integrity management 

and increased benefit generation by service life extension.  
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• The usage of information within a decision scenario and the choice of an 

action supported with the information.  

The proposed framework has been applied in several case studies. Through 

quantification of the value of monitoring information for bridges and wind turbines, 

it has been found that the value of information-based decision can be an efficient tool 

to develop an SHM system design before implementation as well as optimal service 

life integrity management for both new and existing structures. These achievements 

contribute directly to the objectives of COST Action TU1402 (https://www.cost-

tu1402.eu/) and INFRASTAR (https://infrastar.eu/) projects with aim to support the 

reliability, functionality, and sustainability of structures. 

8.2. CONCLUSION 

8.2.1. SPECIFIC CONCLUSIONS OF THE CONCEPTUAL RESEARCH  

The extended methodological summary (Chapter 2) constitutes a comprehensive 

theoretical and mathematical framework to integrate research VoI theory with the 

domains of structural performance, utility and SHM. Furthermore, the model basis 

facilitates to utilize the additional SHM information for decision support. The 

individual conclusions for conceptual research are: 

• A method is developed for identifying the structural and Damage Detection 

System (DDS) affecting parameters (Chapter 3/ Paper 1) which facilitates 

comprehensive guidance to the design of DDS, e.g., sensor number and 

sensor locations, to support decisions on DDS implementation according to 

degradation mechanisms and to determine the optimal DDS information 

acquirement time. 

 

• A detailed, full probabilistic DDS performance model (Chapter 3/ Paper 1) 

is established based on DDS attributes and structural system deterioration 

characteristics. This probabilistic performance model takes basis in a specific 

damage detection algorithm namely stochastic subspace damage detection. 

 

• The developed concepts for utility-based (Chapter 4/ Paper 2) and VoI-based 

decision algorithms can be applied to provide a decision basis for the whole 

service life management of the structure for minimizing the structural risk 

and costs. 

 

• The approach for reliability updating from the utilization of obtained 

monitoring data for bridges and wind turbines (Chapter 4, 5 and 6/ Paper 2, 

3, 4) facilitates to transfer SHM data into knowledge that contributes to the 

structural integrity management and by more accurate prediction of the 

system states. 

https://www.cost-tu1402.eu/
https://www.cost-tu1402.eu/
https://infrastar.eu/
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• The interpretation of the parametric analysis of cost and benefit models 

(Chapter 5, 6 and 7/ Paper 3, 4, 5) can be used to account for different risk 

attitudes and opinions of decision makers towards the operation and 

maintenance of structures. 

8.2.2. SPECIFIC CONCLUSIONS OF THE APPLIED RESEARCH  

The procedure of how the value of SHM information can be utilized before 

implementation has been shown, to 1) help design the SHM system, e.g. sensor 

location and numbers, 2) support the decision on choosing the proper SHM technique, 

3) contribute to monitoring planning, e.g. monitoring times and durations, 4) support 

the maintenance planning regarding the number, points in time and amount of 

maintenance during the service life and 5) to support the optimal decision for service 

life extension. The conclusions from each of the case studies are included: 

• The case study of designing a damage detection system (DDS) for the 

deteriorating truss bridge girder based on value of information (VoI) (Paper 

1) shows that 

a) compared to the repairing situation with no monitoring, implementing 

DDS before repairing is more cost and risk-reduction efficient. 

b) the optimal DDS employment year is sensitive to DDS sensor layout and 

structural deterioration state. 

c) the choices of sensor numbers are not following “the more the better”. 

d) the choices of sensor locations are related to the structural system 

degradation and failure scenarios. 

e) the optimal sensor types should be those with lowest measurement noise 

and Type I error. 

 

• The case study of investigating long-term and short-term monitoring 

duration based on the Great Belt bridge in Denmark (Chapter 4/ Paper 2) 

illustrates that  

a) with an appropriate short-term monitoring strategy, higher utilities can be 

achieved during life cycle integrity management, and thereby is preferred to 

long term monitoring. 

b) the decision maker 's risk attitude is the key factor affecting the choices 

of the optimal monitoring option and service life extension. 

 

• With the case study on quantification of the conditional value of SHM data 

for the fatigue safety evaluation of the 60-year-old viaduct Crêt de l’Anneau 

Viaduct in Switzerland (Chapter 5/ Paper 3), it is found that the fatigue 

damage and failure probability is low complying with acceptance criteria. 

The expected value of the saved cost and reduced risks has been quantified 
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underlining the effectiveness of well-engineered SHM systems and 

information.  

 

• In Chapter 6 (Paper 4), the usage of structural (strain) and environmental 

(SCADA) measurement data in the context of maintenance optimization of 

offshore wind turbine monopile support structures is analyzed. It is 

discovered that the most beneficial strategy is utilizing stain and wind 

monitoring combined. With only wind data usage, it is still more beneficial 

than without any monitoring. The main reason lies here in the fact that 

measurement information circumvents the high model uncertainties 

associated to the fatigue design of wind turbines. 

 

• The case study on quantification of the value of action on wind turbines near 

highways considering icing incidents (Chapter 7/ Paper 5) indicates that the 

decision on whether to place a blade heating device if ice detection 

information is already available, is strongly depending on the period of 

downtime due to ice on the blades. If the downtime duration is over 30 days 

per year, the ice heating device is worth to be added, otherwise it is not. 

8.3. OUTLOOK 

The thesis has demonstrated the applicability of VoI for decision making in five case 

studies. It has huge potential in supporting SHM design before implementation as well 

as the development of efficient monitoring strategies and optimal lifecycle integrity 

management plans for both new and existing structures.  

However, through simplifying the “real” problem with several assumptions, there are 

still some topics remaining worthy for further research. Among these are: 

• The implementation of Artificial Intelligence and Machine Learning in the 

quantification of the VoI, see in [145], [146] and [147]. 

• Further development of a generic program (computational tool) for VoI-

based decision analysis, with build-in modules of various system structure 

models, damage models, detection models and procedures for monitoring, 

inspections, and repairs as well as cost and benefit models. The input should 

be defining the decision scenarios with all the related parameters. The output 

of the program should empower the decision maker to make the optimal 

decision based on the presented VoI results and make it clear why this is the 

optimal decision. 
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• Further standardization of the VoI-based decision, building upon the COST 

Action TU1402 guidelines17. The standardization activities should lead to a 

further penetration of other scientific and standardization organizations to 

stimulate industrial application. 

 

• The computational techniques in this thesis are based on applying the 

decision tree formulation and Monte Carlo Simulation. The current 

implementations of Bayesian updating are computationally demanding. For 

very large system with sequential Bayesian updating in every time step, the 

computational problem will be a challenge. Therefore, simplifications of 

computation need to be investigated.  

 

• In the thesis, the cost and benefit functions have been normalized and 

estimated from the literature. In practice, the costs and benefits are most of 

time confidential, which makes them hard to obtain. Further research could 

work on formulating generic cost models where the users can fill in their own 

cost data. The generic models should be as close as possible to the industrial 

cost models. More research into application-specific cost and benefit 

functions as well as probabilistic cost and benefit modelling need to be 

carried out. 

 

• The assumption of the decision makers’ willingness to take risks, which is 

presented by the target probability threshold in the thesis, may be subject to 

change. The decision maker in practice may have a different criterion. 

Further decision scenarios should be in alignment with industrial and societal 

decision processes with consideration of legal restrictions, social 

governance, and regulations. 

• Application of VoI-based decision analysis to quantify and improve the 

resilience and sustainability of interlinked systems containing 

infrastructures, social governance, regulation, and hazard subsystems with 

consideration of economy and environment, e.g. [143] and [144]. Further 

development of optimized decision strategies on design and governance of 

interlinked social systems. 

 

  

 
17 https://www.cost-tu1402.eu/action/deliverables/guidelines . 

https://www.cost-tu1402.eu/action/deliverables/guidelines
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