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1  INTRODUCTION 
Evaluation of the structural system performance with 
Damage Detection System (DDS) information has re-
cently been introduced. An approach encompassing 
DDS and algorithms is developed by (Döhler and 
Thöns, 2016) and the reliability of a structural system 
of two components with DDS information is updated.  
Building upon the developed approach, the value of 
DDS information for a deteriorating Pratt truss bridge 
system is quantified by (Long et al., 2017). However, 
these studies contained only a general and generic de-
terioration model. This paper addresses the impact of 
various deterioration rates corresponding to different 
deterioration environment on the cumulative proba-
bility of bridge failure over time, which results in dif-
ferent service life benefits and value of DDS infor-
mation.   

The approach takes basis in the value of DDS in-
formation as the relevance for the reduction of the 
structural system risks and the expected cost of the 
system integrity management throughout the life cy-
cle. The results can be used to identify how deteriora-
tion models influence the value of DDS information, 
to better predict the service life of the truss bridge 
girder, and to develop optimal lifetime reliability-
based maintenance strategies for these bridges. 

The description of structural system performance 
is developed in section 2. The general deterioration 
model subject to various deterioration types is intro-
duced. The resistance degradation is explained and 

the deterioration model is coupled into the probabil-
istic models. In section 3, the DDS performance is de-
scribed and the Bayesian approach to update the 
structural system reliability with DDS information is 
introduced. The method for the quantification of the 
value of information for structural system is presented 
in section 4. The approach is applied to a truss bridge 
girder to address the effects of different structural de-
terioration rate on the value of DDS information, 
which is developed in section 5. Section 6 is the con-
clusion. 

2  STRUCTURAL SYSTEM PERFORMANCE  

2.1 Deterioration model  

The event of general deterioration failure of compo-

nent i at time t can be expressed by a  limit state func-

tion 𝑔𝐷𝑖
(𝑡), which describes the deterioration model 

so that probability of component damage can be cal-

culated as 𝑃𝐷.𝑖 = 𝑃(𝑔
𝐷𝑖

(𝑡) ≤ 0) (Straub and Der 

Kiureghian, 2011, Thöns, 2018): 

𝑔𝐷𝑖
(𝑡) = ∆𝑖 − 𝐷𝑖(𝑡) (1) 

where ∆𝑖 is the damage limit of component i, 𝐷𝑖(𝑡) 
is the time-variant continuous damage state for com-
ponent i at time t.  The time variant damage state can 
be presented in terms of three parameters (Enright 
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ABSTRACT: This paper addresses the effects of the deterioration on the value of damage detection information. 
The quantification of the value of damage detection information for deteriorated structures is based on Bayesian 
pre-posterior decision analysis, comprising structural system performance models, consequence, benefit and 
costs models and damage detection information models throughout the service life of a structural system. The 
value of damage detection information accounts for the relevance and precision of the information to ensure 
the structural integrity and to reduce the potential structural system risks and expected costs throughout the 
service life before implementing damage detection system. With the developed approach, the value of damage 
detection information for a statically determinate Pratt truss bridge girder subjected to different deterioration 
models is calculated. The analysis shows the impact of the deterioration model parameters on the value of 
damage detection information. The results can be used to develop optimal maintenance strategies before imple-
mentation of the damage detection system. 



and Frangopol, 1998b, Straub and Der Kiureghian, 
2011): 

𝐷𝑖(𝑡) = 𝛼(𝑡 − 𝑇𝑗)𝛽 (2) 

 𝛼 is annual deterioration rate, β is the deteriora-
tion type, 𝑇𝑗 is the deterioration initiating time at time 
j for element i. For β=1, this corresponds to most ap-
plied corrosion models and to the Palmgren-Miner fa-
tigue model with a stationary stress process; for 
β=0.5, the model is representative of diffusion con-
trolled deterioration; and for β=2, the model approxi-
mates concrete deterioration owing to sulfate attack.   

2.2 Resistance degradation 

The structural resistance represents the internal mate-
rial properties and geometrical characteristics of ele-
ments, which can be modeled with the reduction of 
the initial component resistance in dependency of the 
resistance degradation function and damage state. 

𝑅𝑖(𝑡) = 𝑅𝑖,0 ∙ 𝑔
𝐷𝑖

(𝑡) ∙ 𝑓
𝑅

(𝐃) (3) 

𝑅𝑖(𝑡) is the time variant resistance for component 
i, 𝑅𝑖,0 is the initial resistance of element i and  𝑔𝐷𝑖

(𝑡) 
is the deterioration limit state function from section 
2.1, 𝑓𝑅(𝐃) is the degradation function between re-
sistance and damage states, since resistance is contin-
uously reduced due to the accumulated damage evo-
lution. 

2.3 Stiffness degradation  

With the increase of damage states, the degradation 
of resistance of each component will lead to the loss 
of element stiffness, which can be detected through 
Structural Health Monitoring (SHM) techniques. The 
generic stiffness model is independent of initial stiff-
ness, stiffness degradation function and damage state. 

𝑘𝑖(𝑡) = 𝑘𝑖,0 ∙ 𝑔
𝐷𝑖

(𝑡) ∙ 𝑓
𝑘

(𝐃) (4) 

Where 𝑘𝑖(𝑡) is the time variant stiffness for com-
ponent i, 𝑘𝑖,0 is the initial resistance of element i and   
𝑓𝑘(𝐃) is the degradation function between stiffness 
and damage states. 

2.4 Probabilistic model of system  

For any structural model, failure occurs when the ex-
ternal load 𝑆 exceeds internal resistance 𝑅𝑖(𝑡) due to 
increase of damage and degradation. Considering the 
resistance model uncertainties 𝑀𝑅, and the loading 
model uncertainty 𝑀𝑠, the probability of series-paral-
lel system failure can be written as: 

𝑃(𝐹𝑆) = 𝑃 (⋂ ⋃(𝑀𝑅 𝑅𝑖(𝑡) − 𝑀𝑠𝑆𝑖)

𝑛𝑖

𝑖=1

≤ 0) (5) 

Let 𝑔𝑖(𝐗, 𝐃) denote the limit state function, shown 
in Equation 6, such that   𝑔𝑖(𝐗, 𝐃) ≤ 0 represents the 
condition of failure of structure component. The vec-
tor of the system performance random variables 𝐗 
then comprises the resistance model uncertainties 𝑀𝑅, 
the time dependent component resistances 𝑅𝑖(𝑡), the 
loading model uncertainty 𝑀𝑠 and the component 
loading 𝑆. The vector of the system degradation ran-
dom variables D contains the collection of the deteri-
oration states for all components. Monte Carlo simu-
lation can be used to find the cumulative probability 
of system failure throughout the life cycle. 

𝑔𝑖(𝐗, 𝐃) = 𝑀𝑅𝑅𝑖,0 ∙ 𝑔
𝐷𝑖

(𝑡) ∙ 𝑓
𝑅

(𝐃) − 𝑀𝑠𝑆𝑖 (6) 

3 DDS INFORMATION UPDATING 

3.1 Damage detection systems 

The stiffness changes in the elements of the structure 
can be detected with a damage detection method. 
Based on ambient vibration measurements from a 
(healthy) reference state and measurements from the 
current system, e.g. the Stochastic Subspace Damage 
Detection (SSDD) method computes a hypothesis test 
statistic that compares both states (Döhler et al., 
2014). This test statistic results in a χ2-distributed 
damage indicator, having a central χ2 distribution in 
the reference state and a non-central χ2 distribution in 
the damaged state.  

A threshold is set up in the distribution of the ref-
erence state for a desired type I error for a decision 
between reference and damaged states. Based on such 
a threshold and the theoretical properties of the χ2 dis-
tribution for any given damage, the desired probabil-
ity of indication of such a damage can be calculated 
without using measurement data (Döhler and Thöns, 
2016). 

3.2 Bayesian updating 

Based on the damage state, the DDS can provide the 
indication or no indication of the probability of dam-
age. The updated probability of failure if given no in-
dication of damage 𝑃(𝐹𝑠|𝑫, 𝐼)̅ can be calculated 
through Bayesian updating (Hong, 1997): 

𝑃(𝐹𝑠|𝑫, 𝐼)̅ =
𝑃(𝐼|̅𝐹𝑠, 𝑫)𝑃(𝐹𝑠, 𝑫)

𝑃(𝐼)̅

=
𝑃(𝐹𝑠|𝑫 ∩ 𝐼)̅

𝑃(𝐼)̅
 

(7) 



𝑃(𝐼)̅ is the probability of no indication, 𝑃(𝐼|̅𝐹𝑠 , 𝑫) 
is the probability of no indication given damage fail-
ure. 𝑃(𝐹𝑠, 𝑫) is the probability of damage failure. To 
solve this equation, the joint function of two limit 
states is computed. The limit state function of system 
failure 𝑔𝑠 ≤ 0 can refer to Equation 6. 

 

𝑃(𝐹𝑠|𝐼,̅ 𝐃) =
𝑃(𝑔𝑠 ≤ 0 ∩ 𝑔𝑢 ≤ 0)

𝑃(𝑔𝑢 ≤ 0)
 (8) 

 
The probability of no indication of detecting dam-

age 𝑃(𝐼)̅ can be calculated by integrating in the re-
gion which is defined with the limit state function 
𝑔𝑈 ≤ 0. The limit state function 𝑔𝑈 is defined as the 
difference between the probability of indication given 
damage 𝑃(𝐼|𝐃) and a uniformly distributed random 
variable 𝑢 (Thöns and Döhler, 2012). 𝑃(𝐼|𝐃) can be 
calculated through realization of damage state from 
section 3.1. 

𝑔𝑈 = 𝑃(𝐼|𝐃) − 𝑢 (9) 

4 VALUE OF INFORMATION 

The quantification of the value of monitoring infor-
mation for deteriorated structures is based on Bayes-
ian (pre-)posterior decision analysis, comprising de-
cision rules, structural system performance models, 
probabilistic reliability models, consequences analy-
sis as well as benefit and costs analysis associated 
with monitoring results over their life cycle. The 
value of DDS information is quantified by calculating 
the difference of the service life utilities with and 
without damage detection information, show in Equa-
tion 10,11and 12, where 𝐢 is the choice of information 
strategy, 𝒁 is the possible outcomes, 𝐚 is the choice 
of the action and 𝛉 is the system states, 𝑢0

∗  is the prior 
utility, 𝑢𝑖

∗ is the (pre-)posterior utility, 𝐸 is the ex-
pected value (Thöns, 2018). 

𝑉𝑜𝐼𝑖 = 𝑢𝑖
∗ − 𝑢0

∗  (10) 

𝑢0
∗ = 𝑚𝑎𝑥

𝐚
𝐸𝛉

′ [𝑢(𝐚, 𝛉)] (11) 

𝑢𝑖
∗ = 𝑚𝑎𝑥

𝐢
𝐸𝐙|𝐢 [𝑚𝑎𝑥

𝐚
𝐸𝛉|𝐙

′′ [𝑢(𝐢, 𝒁, 𝐚, 𝛉)]] (12) 

5 EXAMPLE  

With the developed approach, the value of damage 
detection information for a statically determinate 
Pratt truss bridge girder subjected to different deteri-
orating rate is calculated.  The service life of the truss 
bridge girder is assumed to be 50 years. 

 
 

 
 
Figure 1. Pratt truss. 

 

5.1 Deterioration model 

The Pratt truss bridge girder is composed with 29 
components, shown in Figure 1. This paper focusses 
on the corrosion and fatigue deterioration on the steel 
truss bridge girder, so that β=1 is chosen. Assume the 
girder is under different severity of corrosion or fa-
tigue. The deterioration model is chosen following 
Equation 13. Once deterioration has been initiated, 
the cross-section area of the components decreases 
with time at a different rate. As indicated in Table 1, 
three cases were considered. They are associated with 
assumptions of low, medium and high deterioration 
corresponding to different environment or structural 
materials. 

𝐷𝑖(𝑡) = 𝛼(𝑡 − 𝑇𝑗) (13) 

 
Table 1.  Deterioration parameters 

Degrada-
tion rate α 

𝐸(𝑇𝑖) 

(yr) 

Distribu-
tion 

Mean  Standard 
deviation 

Low 15 Lognor-
mal 

0.000013 0.001 

Medium  10 Lognor-
mal 

0.000076 0.001 

High 5 Lognor-
mal 

0.000254 0.001 

 
When it is under low deterioration, it initiates from 

year 15 with a mean of deterioration rate of 0.000013, 
for instance when it is in an industrial environment. 
When in medium deterioration, it starts from year 10 
with a mean deterioration rate of 0.000076.  When it 
is highly deteriorated, it will start from year 5 with 
mean rate of 0.000254 such as the bridge is in the ma-
rine environment (Tinnea, 2012, Enright and 
Frangopol, 1998a).   

 

5.2 Resistance Degradation 

The resistance is degraded following Equation 14. 
The description of structural reliability model of the 
truss bridge girder is summarized in Table 2. The ex-
pected value of resistance degradation E(R(t)) in three 



cases is shown in Figure 2, which gives a linear deg-
radation. 

𝑅𝑖(𝑡) = 𝑅𝑖,0(∆𝑖 − 𝛼(𝑡 − 𝑇𝑗)) (14) 

 

 
 
Figure 2. Expected resistance degradation in service life. 

 

5.3 Prior probability failure  

The structural system performance of the Pratt truss 
bridge girder builds upon a series system and is cou-
pled with time-variant damage models describing 
continuously the deterioration process and structural 
resistance degradation throughout the service life: 

𝑃(𝐹𝑆) = 𝑃 (⋃(𝑀𝑅 𝑅𝑖(𝑡) − 𝑀𝑠𝑆𝑖

𝑛𝑖

𝑖=1

) ≤ 0) (15) 

For the series system, the system limit state func-
tion is the minimum of the components limit state 
function:  

𝑔𝑠 = 𝑚𝑖𝑛
𝑖=1

(𝑀𝑅  𝑅𝑖,0(∆𝑖 − 𝛼(𝑡 − 𝑇𝑗)) − 𝑀𝑠𝑆𝑖) (16) 

The mean of the initial resistance 𝑅𝑗,0 is calibrated 
to a probability of system failure of 10−6 disregarding 
any damage. The initial probability of failure is asso-
ciated to large consequence of failure and small rela-
tive cost of safety measures (JCSS, 2006). 

 

 
 
Figure 3. Prior probability of system failure in service life. 

 
 The probability of system failure is calculated by 
Monte Carlo simulations. The probability of truss 
failure will increase with time due to deterioration 
damage and it is shown in Figure 3. With a higher ex-
pected value of the deterioration rate, the resistance 
of the bridge will degrade faster and the truss bridge 
will have a higher probability of failure at the end of 
service life. 

 
Table 2.  Deterioration parameters 

Random variable Distribu-

tion 

Mean Standard 

deviation 

Loading 𝑆𝑖 WBL 3.50 0.1 

Model uncertainty SM
 

LN 1.00 0.1 

Component re-

sistances in undam-

aged state 𝑅𝑖,0 

LN Cali-

brated  

0.1 

Model uncertainty 𝑀𝑅 LN 1.00 0.1 

Damage limit ∆𝑖 LN 1.00 0.3 

Coefficient resistance 

correlation  ρR 

Determin-

istic 
0.9 

 

Coefficient damage 

correlation ρD 

Determin-

istic 
0.9 

 

 
 

5.4 DDS and probability of damage indication 

The damage detection system (DDS) is detecting the 
stiffness loss of each element of the structure, which 
is expressed as relative changes of ratio of the initial 
axial stiffness: 

𝑑𝑘𝑖 = 1 −
𝑘𝑖

𝑘𝑖,0
 (17) 

When the truss is under tensile, stiffness has a re-
lation with cross section area, length and Young’s 
modulus, 𝑘𝑖 = 𝐸 ∗ 𝐴𝑖(𝑡)/𝐿. The cross section is re-
duced due to the increase of damage states: 
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𝐴𝑖(𝑡) = 𝐴𝑖,0 − ℎ(𝐷𝑖(𝑡)) (18) 

𝐴𝑖,0 is the initial cross section area, 𝐴𝑖(𝑡) is the 

cross-sectional area at time t, h is the function between 

damage state and the cross-section area. So that the rela-
tion between damage state and stiffness loss can be 
expressed as: 

𝑑𝑘𝑖 = 1 −
𝐴𝑖(𝑡)

𝐴𝑖,0

= 1 −
𝐴𝑖,0 − ℎ(𝐷𝑖(𝑡))

𝐴𝑖,0

 (19) 

𝑑𝑘𝑖 = γ ∙  ℎ(𝐷𝑖(𝑡)) (20) 

γ is the correction factor, in which 𝛾 = 1/𝐴𝑖,0 
The damage detection system is modelled with the 

acceleration sensors located in node 12, 13, 14 of the 
truss in Y-direction recording the response using the 
SSDD algorithm. Based on the dynamic structural 
system model, a reference dataset of length N = 
10000 at a sampling frequency of 50 Hz is simulated 
in the undamaged state. Ambient excitation (white 
noise) is assumed at all degrees of freedom whose co-
variance is the identity matrix. Measurement noise is 
added on the resulting accelerations with standard de-
viation at each sensor of 5% of the standard deviation 
of the signal. The type I error for the indication 
threshold is 1%.  

 

 
Figure 4. Probability of damage indication for 29 components in 
dependency of stiffness loss. 

 
 
The probability of indication of damage independ-

ency of discrete damage states (represented by the 
stiffness loss) for the 29 individual components is 
shown in Figure 4. It should be noted that the joint 
probability of indication is not depicted but accounted 
for. The probability of damage indication for contin-
uously damage state for one component is calculated 
based on Equation 20 and the results for three cases 
are shown in Figure 5, where correction factor is 1 
and 𝑑𝑘𝑖 =  𝐷𝑖(𝑡). With higher expected value of de-
terioration rate, the damage will have accumulated 

faster and the truss bridge will have higher probability 
of damage indication. 
 

 
 
Figure 5. Probability of damage indication for one component 
during service life. 

5.5 Bayesian updating 

The updated probability of system failure given dam-
age detection information is computed utilizing 
Bayesian updating theorem. If implementing the DDS 
in a specific year and updating the results of probabil-
ity of no indication of damage, the (pre-)posterior 
probability of system failure is calculated based on 
the Equations 8, 9 and 16. The results when imple-
menting DDS at year 14 if expected deterioration rate 
is 0.000254, at year 18 if expected deterioration rate 
is 0.000076, at year 30 if expected deterioration rate 
is 0.000013 are shown in Figure 6.  

 
Figure 6. (Pre-)posterior probability of system failure if imple-
menting DDS at certain year. 

 
 
It can be seen from the figure that the (pre-)poste-

rior of probability of failure when given no indication 
of damage will be reduced significantly. 
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5.6 Value of information  

The bridge manager wants to carry out a repair plan 
but he is not sure whether or when to implement dam-
age detection system as the bridge is observed to ex-
perience an unusually high deterioration. Therefore, a 
value of information analysis is made to provide the 
decision basis. The illustration of decision tree is 
shown in Figure 7. 

The investment cost of the bridge is CI. The deci-
sion nodes are implementing DDS or no DDS and re-
pair or do nothing. When implementing DDS, there 
will be a cost of DDS, CDDS; when performing a repair 
action, there will be a repair cost, 𝐶𝑅; when DDS is 
providing a damage indication of the bridge, there 
will be a damage localization cost, 

locC . The state of 
bridge is either safe or failure. If it is failed, there will 
be a failure cost, CF, accounting for the direct and in-
direct consequences. Considering the discount rate, 
the costs model is shown in Table 3. 

 
Figure 7. Illustration of decision tree combining a prior decision 
analysis and a pre-posterior decision analysis. 

 
 

The cost of repair is increased with time due to the 
fact of increased severity of damage, which followed 
the Equation 21 (Higuchi, 2008). When the bridge is 
repaired, it performs as a new one with the same prob-
abilistic characteristics as originally, in which proba-
bility of system failure after repair equals to 10−6. 
The system is required to take repair action when 
probability of failure is exceeded of 10−4 according 
to the same target reliability class with high costs of 
safety measures. 

𝐶𝑅 =
𝐶𝐼

𝑇𝑆𝐿 + 2 − 𝑡
 (21) 

 
Table 3.  Costs model 

Discount 

rate r 

Invest-

ment 

cost   CI 

Failure 

cost CF 

Localiza-

tion cost 

locC   

DDS cost 

CDDS  

0.02 10 1000 0.1 0.1 

 
Figures 8, 9 and 10 show the repair plan of the 

bridge during service life when installing DDS at dif-
ferent years under specific deterioration conditions.  
If without DDS, the system will need to be repaired 
three times when deterioration is large, to be repaired 
two times when deterioration is medium and be re-
paired one time when the deterioration is small.  

If utilizing DDS at certain year, the repair times of 
the system can be reduced, for example, reduced to 
two times if implementing DDS at year 14 when de-
terioration is large. When the deterioration is medium 
and small, if carrying out DDS separately at year 18 
and 30, the bridge will not need to be repaired during 
service life. 

 

 
 
Figure 8. Repair plan during service life if implementing DDS 
at year 14 when expected mean deterioration rate is 
E(α)=0.000254. 

 

 
 
Figure 9. Repair plan during service life if implementing DDS 
at year 18 when expected mean deterioration rate is 
E(α)=0.000073. 
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Figure 10. Repair plan during service life if implementing DDS 
at year 30 when expected mean deterioration rate is 
E(α)=0.000013. 

 
 
When the deterioration rate is large, it will deteri-

orate from year 5. From Figure 3, it is shown that the 
probability of failure will reach the threshold 10−4 in 
year 14. After year 14, it will always take two repair 
actions and the value of DDS information may be 
low. Therefore, the VoI analysis is only focused on 
the period from year 6 to year 14. When installing 
DDS at year 6 and 7, the bridge needs to be repaired 
two times if given no indication of damage. If in-
stalling from year 8 to year 11, the repair times can be 
reduced to only one time, which will lead to a higher 
value of DDS due to lower sum of repair costs. How-
ever, when implementing DDS from year 12 due to 
shorter impact on the risk reduction, the bridge needs 
to be repaired two times again, which will result in a 
negative value of information (VoI), shown in Figure 
11.  The maximum VoI will be in year 8, with 24% of 
relative value of DDS information compared with 
benefits of not doing DDS. 

When the deterioration rate is medium, it will de-
teriorate from year 10. From Figure 3, it is shown that 
the probability of failure will reach to the threshold 
10−4 in year 18. After year 18, it will always take re-
pair action, the DDS information will have no impact 
on the decision. Therefore, the VoI analysis only fo-
cuses on period from year 11 to year 18 when deteri-
oration is 0.000076.  If implementing DDS at year 11 
and 12, the system will need to be repaired one time 
given no indication of damage, which results in a 
higher repair costs in the late of life cycle and a neg-
ative VoI, shown in Figure 12. However, since year 
13, the bridge will no longer need to be repaired if 
given no damage indication due to a large reduction 
of risk. The Value of DDS Information is decreasing 
in the consecutive years as the period for which the 
DDS information provide a risk reduction becomes 
shorter. When the deterioration rate is medium, im-
plementing DDS at year 13 can get the maximum VoI 
with 28% of relative of value of information. 

When the deterioration rate is small, it will deteri-
orate from year 15. From Figure 3, the probability of 
failure will reach to the threshold 10−4 in year 30. 
There will be no need to implement DDS after year 
30 because the system will always require one repair 
action. Therefore, the low deterioration VoI analysis 
focuses on period from year 16 to year 30. The imple-
mentation of DDS will always have a positive effect 
leading to no repair costs during service life because 
of the large reduction of the risks (Figure 13). The 
Value of DDS Information is increasing at the begin-
ning due to reduction of accumulated failure risk and 
decreasing in the consecutive years as the period for 
which the DDS information provide a risk reduction 
becomes shorter. The maximum VoI will be in year 
20 when expected deteriorating rate is 0.000013 with 
67% of relative value of DDS information. 

 
 
Figure 11. Value of DDS information independency of the DDS 
implement year when expected deterioration rate is 
E(α)=0.000254. 

 

  
 
Figure 12. Value of DDS information independency of the DDS 
implement year when expected deterioration rate is 
E(α)=0.000076. 
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Figure 13. Value of DDS information independency of the DDS 
implement year when expected deterioration rate is 
E(α)=0.000013. 

 

6 CONCLUSION 

It has been demonstrated that the structural deteriora-
tion has an effect on the value of damage detection 
information. The analysis shows the impact of vari-
ous deterioration rates corresponding to different 
types of deteriorating environments on the cumula-
tive probability of bridge failure over time, which re-
sults in different service life benefits and values of 
damage detection information. 

The example of deteriorating truss bridge girder il-
lustrates that the value of information is highly de-
pending on how much the risk and the accumulated 
repair costs can be reduced during the service life. 
The maximum relative value of DDS information will 
be higher if the deterioration rate is smaller. The re-
sults can provide decision basis to develop optimal 
lifetime maintenance strategies before implementa-
tion of the damage detection system for bridges under 
different deterioration processes. 
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