Innovation and Networking for Fatigue and Reliability Analysis of Structures – Training for Assessment of Risk

From Micro to Macro: a validation of a multiscale coupling FEM-DEM

Gianluca Zorzi¹

¹ GuD Geotechnik und Dynamik Consult GmbH, zorzi@gudconsult.de

¹ Soil Mechanics and Geotechnical Engineering Division, Technical University of Berlin

Research question

Is the multiscale coupling FEM-DEM [1] applicable to solve common geotechnical

problems?

Validation of the method in term of cyclic and monotonic loadings

Where to start

Validation with common laboratory tests:

- Triaxial test with glass ballotini
- Triaxial test with Sand

How does the multiscale coupling FEM-DEM work?

INFRASTAR

- Finite Element Method (FEM) solves the boundary value problems
- Discrete Element Method (DEM) derives the characteristic macroscopic behaviour of granular materials from the mutual interaction of a representative number of discrete elements.
- The micromechanical parameters in DEM are calibrated with a pure DEM REV on different boundary conditions (confining pressure)

- Glass Ballotini diameters 2 mm
- rolling and twisting stiffness

Conclusions

- FEM-DEM is a simple method without complicated and phenomenological constitutive relations
- High congruence in term of stress and strain between the experimental tests and the coupling FEM-DEM
- The gap in the volumetric strain graph for sand is still a challenge due to the approximation of the real grains by means of spheres
- The calculation time is still the main issue of this method when more elements are considered (refining the mesh)

Future works

- Automatic method for the micromechanical parameters calibration \bullet
- Other laboratory tests will be simulated and compared with experimental tests \bullet
- Cyclic loading conditions will be addressed on a simple shallow foundation
- 1. N. Guo and J. Zhao, 2014. A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media
- Viet Hung Le, 2015. PhD thesis, Technical University of Berlin 2.
- Fabio Gabrieli, Triaxial test on Glass Ballotini. ICEA, University of Padova 3.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 676139.

