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Abstract: In this paper, we study the strain transfer mechanism between a host material and an
optical fiber. A new analytical model handling imperfect bonding between layers is proposed.
A general expression of the crack-induced strain transfer from fractured concrete material to
optical fiber is established in the case of a multilayer system. This new strain transfer model
is examined through performing wedge splitting tests on concrete specimens instrumented with
embedded and surface-mounted fiber optic cables. The experimental results showed the validity
of the crack-induced strain expression fitted to the distributed strains measured using an Optical
Backscattering Reflectometry (OBR) system. As a result, precise estimations of the crack openings
next to the optical cable location were achieved, as well as the monitoring of the optical cable response
through following the strain lag parameter.

Keywords: strain transfer; imperfect bonding; distributed strains; fiber optics sensors; concrete; crack;
crack opening; wedge splitting test

1. Introduction

Detection and monitoring of crack openings are critical points in the structural health monitoring
of civil structures. Early detection and accurate localization of multiple close microcracks with a crack
spacing in the order of several centimeters is of interest. In addition, controlling cracks openings within
a certain threshold is of paramount importance for reinforced concrete structures, more particularly
for structures like nuclear power plants, water reservoirs, and prestressed bridge decks. While several
types of sensors and Non Destructive Testing (NDT) techniques can be used for this purpose, optical
fibers are particularly interesting because of their ability to perform distributed measurements, making
them more likely to intercept cracks propagating in a structural element (Figure 1a). Moreover, the use
of thin optical cables is particularly advantageous inside structures where no robust and non-intrusive
crack meters or NDT techniques can do the job.
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Figure 1. Crack detection using Distributed Fiber Optics Sensing (DFOS) techniques: (a) Comparison
to traditional sensors, (b) strain transferring between layers [1].

Several devices have already been proposed to detect and localize cracks using Brillouin
scattering [2–6] or Rayleigh scattering, in time domain reflectometry [7–12] or frequency domain
reflectometry [13–18]. As a result, a new question arises as to the strain transfer between the host
material and the optical fiber, and its potential use for the quantification of crack openings.

Different types of optical cables are available in the market. Among them, some are conceived
to be embedded inside the structure during construction, while others are more suitable for surface
installation on existing structures. These cables, formed of different materials and shaped in different
forms, lead to a different strain transfer response due to shear lag effect in the intermediate layers. In
most cases, small information concerning the mechanical properties of the cable and its constituent
elements, are available. In addition, the long-term behavior of these cables also remains unknown.

Moreover, localized strain near a propagating crack (Figure 1b) can cause a plastic deformation in
intermediate layers or slippage at the interfaces. With the entire complicated phenomenon, monitoring
the crack openings quantitatively using an optical cable bonded along a host material is still a challenge
and the idea of measuring strain near cracks is always a complicated problem [19]. Recently, methods
of estimating crack openings from distributed strain measurements were presented whether by
combination to finite element models [15,20] or through calculation of the optical fiber elongation by
summing strain gradients [17,21,22]. However, the limitations of these methods prevailed in the cases
of multiple crack propagation and until a certain crack opening limit.

Surmounting the mentioned challenges require a good understanding of the mechanical strain
transfer near cracks. The case of strain transfer in continuous materials, when no crack exists, was first
studied in 1998 by Ansari and Libo [23]. The authors proposed an analytical model for a Silica optical
fiber/coating/host material mechanical system. This model is based on the so-called "strain-lag"
approach, which was initially developed for the study of bonded assemblies in 1938 by Völkersen [24]
and now commonly applied to bonded structural reinforcement composites. In 2006, D. Li et al. [25]
proposed an improvement of Ansari’s model for short-length discrete sensors.

Since 2012, three models (analytical and numerical) [5,6,26] were proposed to describe the strain
transfer in the presence of a crack in the host material. Imai et al. [5] adapted the assumption proposed
previously by Duck et al. [27], by introducing the effect of a crack discontinuity in the host material
as a Gaussian distribution at the contact interface with protective coating. It was then used as an
input to a finite element model, showing that the crack-induced strain distribution in the optical fiber
takes the form of an exponential distribution. Wang et al. [28] assumed that the strain at the crack
location is equal to the crack opening over the spatial resolution of the measurement instrument. As
this assumption is mainly dependent on the spatial resolution (varying from a measuring instrument
to another), it seems to neglect the buffering effect of intermediate layers in the area surrounding the
crack location. Therefore, it is considered as a very simplifying approximation affecting the strain
transferring theory. Feng et al. [6] introduced the Crack Opening Displacement (COD) in D. Li’s model
as an additional local discontinuity in the host material deformation field.
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All these models consider a three layer system with perfect bonding between layers. In this paper,
we generalize Feng’s approach to a multilayer system with imperfect bonding between layers. The
first section is devoted to the presentation of the analytical model. Then, the test set-up and the optical
cables are described. The experimental results demonstrate the validity of the model and the precision
of the estimated crack openings.

2. Strain Transfer Theory for a Multilayer Structure

The system studied is shown in Figure 2. It consists of N intermediate concentric layers (i=1 to
N)with the optical fiber at the heart of the assembly. The cylindrical coordinates (r, θ, z) are used, with
z being the coordinate along the fiber axis.

Figure 2. Multiple layers strain transfer system figuring a discontinuity in the host material and an
imperfect bonding at different intermediate layers.

The coatings deform essentially under the effect of shear stress and the radial displacements
ui

r(r, z) are assumed to be small compared to the axial displacements ui
z(r, z). Therefore, the only

relevant parameters to describe the system are: γi(r, z) the engineering shear strain in the ith layer in
the z− r plane, τi(r, z) the shear stress in the z− r plane, εi(z) the strain along the z direction, and
σi(z) the normal stress in the z direction. The other components of the strain and stress tensors can
be neglected. Under this assumption, the strain-displacement relationship and the Hook’s law are
reduced to:

εi(z) =
dui(z)

dz
' σi(z)

Ei
(1)

and

γi(z, r) ' dui(z)
dr

=
τi(z)

Gi
(2)

where E and G= E
2 (1+ν)

are the Young and shear modulus of elasticity, ν being the Poisson’s ratio.

A crack is assumed at the position z = 0, which induces an additional discontinuity COD
2 . Thus,

the displacement um(rN , z) in the host material in the vicinity of the crack is:

um(rN, z) =
∫ z

0
εm(z′)dz′ +

COD
2

for z ≥ 0 (3)

where εm(z′) is the strain in the host material. If this strain is uniform according to z or at the
most linear:

εm(z) = K(L− |z|). (4)
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As in the case of three-point bending, the displacement becomes equal to:

um(rN, z) = K
(

L− z
2

)
z +

COD
2

for z ≥ 0 (5)

with K representing the strain variation rate along z.
The force equilibrium at the interface between two intermediate layers yields:

τi(r, z) =
ri−1

r
τi−1(ri−1, z) for ri−1 ≤ r ≤ ri. (6)

At the interface between the optical fiber and the primary coating, the force equilibrium can
be written as:

τf (r f , z) = −
r f

2
dσf (z)

dz
=

r f E f

2
d2u f (z)

dz2 . (7)

In the case of imperfect bonding, the difference in displacement between two consecutive layers
has two causes: The shear deformation and the slip at interface. The shear deformation ∆ushear

i =

ui(ri, z)− ui(ri−1, z) can be obtained by integrating Equation (2):

∆ushear
i =

∫ ri

ri−1

τi(r, z)
Gi

dr. (8)

Using Equation (6) leads to:

∆ushear
i =

τf (r f , z)
Gi

∫ ri

ri−1

( ri−1

r

)( ri−2

ri−1

)
...
( r f

r1

)
dr =

τf (r f , z)
Gi

∫ ri

ri−1

r f

r
dr. (9)

Finally, introducing Equation (7) leads to:

∆ushear
i = −

r2
f E f

2Gi
ln
(

ri
ri−1

) d2u f (z)
dz2 . (10)

Based on the current interfacial state at the coating/host material interface, the slip at the interface
between layer i and i + 1 can be written as:

∆uslip
i =

τi(ri, z)
ki

(11)

where ki is the stiffness parameter depicting the level of interfacial adhesion between two consecutive
layers: ki → ∞ corresponds to a perfect bonding state and ki = 0 to a full debonding state. Using
Equation (6), the slip can be rewritten as:

∆uslip
i =

τ1(r1, z)
ki

(
ri−1

ri

)(
ri−2

ri−1

)
...
(

r1

r2

)
=

τ1(r1, z)
ki

(
r1

ri

)
. (12)

Since r1 τ1(r1, z) = r f τf (r f , z) and using Equation (7), Equation (12) can be written as follows:

∆uslip
i = −

r2
f E f

2ri ki

d2u f (z)
dz2 . (13)

As a result, the multilayer axial displacement compatibility equation is then given by:

N

∑
i=1

[
∆ushear

i + ∆uslip
i

]
+ u f (z) = um(rN, z). (14)
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Introducing Equations (5), (10), and (13) into Equation (14) leads to:

−
E f r2

f

2

[
1

G1
ln

(
r1

r f

)
+

N

∑
i=2

1
Gi

ln
(

ri
ri−1

)
+

N

∑
i=1

1
ri ki

]
d2u f (z)

dz2 + u f (z) =
[

K
(

L− z
2

)
z +

COD
2

]
(15)

and thus:
d2u f (z)

dz2 − λ2u f (z) = −λ2
[

K
(

L− z
2

)
z +

COD
2

]
(16)

where the strain lag parameter λ is equal to:

λ2 =
2

E f r2
f

[
1

G1
ln

(
r1

r f

)
+

N

∑
i=2

1
Gi

ln
(

ri
ri−1

)
+

N

∑
i=1

1
ki ri

] . (17)

The general solution of Equation (16) satisfying the boundary conditions: u f (0) = 0 and ε f (z)→
±εm(z) for z→ ±∞ is of the form:

u f (z) =
(

COD
2
− K

λ2

)(
1− e−λz

)
+ K

(
L− z

2

)
z. (18)

By differentiating Equation (18) with respect to z, we obtain the general strain transfer equation
for multilayer cable with imperfect bonding:

ε f (z) = λ

(
COD

2
− K

λ2

)
e−λz + K (L− z) . (19)

As the strain varies in concrete structures over important span lengths, the K/λ2 term is usually
lower than 1 µm and therefore can be neglected compared to the crack openings we expect to estimate
( COD

2 >> K
λ2 ). Thus, a symmetrical strain response measured by the optical fiber around the crack

location (at z = 0) consists of a crack-induced strain part added to the strain in the host material,
whether it is constant:

ε f (z) = λ
COD

2
e−λ|z| + εm (20)

or varies in a linear form:
ε f (z) = λ

COD
2

e−λ|z| + K (L− |z|) . (21)

To sum up, whether a perfect bonding exists at the different interfaces of a multilayer system
or a slip occurs with a finite and constant adhesion coefficient, the same exponential form of the
crack-induced strain distribution is observed. Moreover, introducing an additional protective or
adhesive layer does not affect the strain distribution form when all different layers are behaving in an
elastic manner. What differs each case is how the strain lag parameter is related to the characteristics
of the system.

3. Experimental Campaign

3.1. Test Setup

The Wedge Splitting Test (WST) was initially proposed by Linsbauer and Tschegg (in 1986) [29]
and developed later by Brühwiler and Wittmann (in 1990) [30] for the study of fracture mechanisms in
cementitious materials. The test consists on transforming a vertical force from a stiff steel profile to
two splitting forces acting on the specimen.

Figure 3a shows the geometry of the tested concrete specimens. It is derived from the configuration
proposed by Brühwiler [30]. A metallic support with a width equal to 3 cm is located in the center of
the specimen and fixed to the lower plate of the testing machine. The main feature of the loading device
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is the use of wedges and rollers. Two massive steel loading devices equipped with roller bearings on
each side are fabricated to be placed on top of the specimen.

(a) (b)
Figure 3. (a) Shopdrawing of the testing set-up. (b) Front view of the loading arrangement and the
concrete specimen instrumented with DFO and LVDT sensors.

The specimens dimensions are 800 mm×800 mm×20 mm, with an 8 mm×5 mm groove and a
starter notch of 400 mm. The height of the notch is chosen equal to half the height of the specimen, in
order to guarantee a vertical crack propagation [30,31]. The notch is created by fixing a 2 mm thick
steel plate in the molds before casting. The surfaces facing the concrete are painted with lubricating oil
to reduce the friction between the plate and the concrete during demolding.

Linear Variable Differential Transformer (LVDT) sensors, Linear Variable Differential Transformer
covering a 50 mm range, are fixed at the level of the fiber optic lines from both sides of the specimen in
order to provide reference measurements of the crack openings. They have a displacement precision
of 1 µm and a measurement range of 10 mm. The sensors were calibrated before each test.

The wedge splitting test leads to a vertical propagation of a single tensile crack towards the central
metallic support. The height of the specimen allows reach to crack openings of several millimeters
before complete failure of the specimen. In addition, a main advantage of the test setup is that the
strain in the host material is mainly localized in the fracture process zone during the microcracking
stage and it disappears later on during the macrocracking stage. Thus, the strain in concrete can be
neglected and evaluating the crack-induced strain becomes more direct using a simplified form of
Equation (19):

ε f (z) = λ
COD

2
e−λ|z| (22)

In total, 11 specimens equipped with different types of optical cables were tested. The tests were
performed after at least 28 days of concrete curing.
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3.2. The Optical Cables and Their Insertion

The tested types of cables are listed in Figure 4. Five of them are thin optical fibers (Polyimide,
Acrylate A1 and A2, Hytrel, and FutureNeuro), three are robust cables containing a steel layer (Acrylate
fiber in Metal tube, BRUsens V4, and V9), and one is a complex non-concentric cable (Sensolux).

Figure 4. Different types of tested optical cables.

These fiber optic cables were whether embedded inside the specimen or glued in a U-groove
engraved on the surface. In order to make sure that the cables keep their same position, they were
strained (Figure 5a) and fixed to the two sides of the formwork using dominos (Figure 5b).

(a) (b)
(c)

Figure 5. (a) View of two fiber optic cables fixed to both sides of the formwork. (b) Fiber optic cable
fixed to the formwork using dominos. (c) Fiber optic cable introduced inside a groove filled with
epoxy glue.

After removing the formwork, the U-groove was sewed perpendicularly to the estimated vertical
direction of the crack. The dimensions of the groove were adapted to the diameter of each type of fiber
optic cable. After adding a first layer of epoxy glue, the cable is introduced inside (Figure 5c) and then
covered with a second layer to fill the groove.

For embedded cables, the geometry of insertion corresponds exactly to the assumptions of the
model (see Figure 6a).
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(a) (b)

Figure 6. (a) Embedded cable; (b) Surface-mounted cable.

Then, according to Equation (17), the strain lag parameter can be expressed as:

λ2
emb =

2

E f r2
f

[
1

G1
ln

(
r1

r f

)
+

N

∑
i=2

1
Gi

ln
(

ri
ri−1

)
+

N−1

∑
i=1

1
kiri

]
+

E f r2
f

km/crc

(23)

where km/c is the interfacial adhesion coefficient at the host material/cable interface. For
surface-mounted cables, the modelization is not so straightforward. Given the dimension of the
groove, the epoxy glue can be considered as an additional concentric layer of radius ra, surrounded by
the host material as illustrated in Figure 6b. The strain lag parameter is then given by:

λ2
surf =

2

E f r2
f

[
1

G1
ln

(
r1

r f

)
+

N

∑
i=2

1
Gi

ln
(

ri
ri−1

)
+

N−1

∑
i=1

1
kiri

]
+

E f r2
f

ka/crc
+

E f r2
f

km/ara
+

E f r2
f

Ga
ln
(

ra

rc

) (24)

where ka/c and km/a are the interfacial adhesion coefficients at the adhesive/cable and host
material/adhesive interfaces and Ga the shear modulus elasticity of the adhesive.

The five concrete specimens are presented in Figure 7, where "E" and "S" correspond to Embedded
and Surface-mounted lines respectively. Figure 7 also presents the groove dimensions corresponding
to each type of optical cable.

Figure 7. Shop drawing of the specimen’s fiber-optic instrumentation policy.

During the tests, distributed strain measurements were performed using the ODISI–B
interrogation unit (manufactured by Luna). Each wedge splitting test was controlled under a vertical
displacement rate of 0.2 mm/min and performed until the crack opening at all different optical fiber
lines reached at least 2 mm. The ODISI-B interrogator was continuously measuring at a frequency
equal to 20 Hz using the high resolution operating mode (spatial resolution of 1.3 mm).
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4. Validation of the Mechanical Strain Transfer Model

The objective of this section is to show that Equation (22) covers different types of cables in
different insertion configurations on the structure. Firstly, two parameters are examined: Maximum
amplitude (peak value) and the shape of the strain profiles measured by the fiber.

The maximum amplitude of the strain measured by the fiber εmax
f is the strain at the center

of the crack. This peak strain value should be equal to ε f (0) = λ COD
2 according to Equation (22).

Therefore, a linear variation of εmax
f in function of the crack opening displacement is expected, as

long as Equation (22) holds true. Figure 8 shows the variation of the maximum strain amplitude as a
function of the crack opening measured by LVDT sensors.

Figure 8. Peak strain variation εmax
f at the crack location for the different optical fibers in function

of the measured crack opening: (a) Thorlabs, (b) BRUsens V1, (c) SensoLux, (d) Metal tube, (e) Thin
optical fibers.

Nine of the eleven tested optical fibers figured the same behavior where εmax
f varies linearly with

the crack opening until a threshold, CODmax, where it deviates from linearity. This threshold separates
the region where the cable has an elastic behavior from the region where it has a post-plastic nonlinear
behavior. Its value depends critically on the used cable. It varies from 80 µm for the Polyimide fiber to
1400 µm for the FutureNeuro cable (Figure 8e), which was glued directly to the surface of the concrete
specimen. For most of the optical cables with an external diameter less than 1 mm (Figure 8a,d,e),
CODmax is comprised between 150 µm and 200 µm. Thicker optical cables, the SensoLux and BRUsens
V1 cables (Figure 8b,c), figured higher CODmax of respectively 400 µm and 900 µm. It is important
to mention that some optical cables, i.e. the Metal tube and SensoLux cables (Figure 8c,d), figured
lower CODmax levels when embedded inside the concrete material compared to the glued on the
surface. This could be due to an early unstable cable/concrete adherence in the absence of the epoxy
adhesive layer. The extremely smooth surface of the SensoLux and Metal tube cables could be the main
reason behind this change in behavior. Smooth surface is usually an important factor in increasing



Sensors 2020, 20, 2220 10 of 17

the adherence with epoxy adhesives. On the other hand, rugged surface can be more convenient for a
good bonding with non-homogeneous materials like concrete.

As a second step, and once the crack opening validity range has been established, the shape of the
measured strain distribution profiles should conform to the model depicted by Equation (22). Figure 9
presents the strain profiles measured over the different cables when the crack opening is equal or close
to CODmax (stars). In addition, the associated computed fits using Equation (21) are also presented
(solid lines).

Figure 9. Measured crack-induced strain distribution at a Crack Opening Displacement (COD)
= 200 µm compared to the one computed using the analytical model for different optical cables:
(a) Thorlabs, BRUsens V1, SensoLux and Metal tube; (b) Hytrel, Acrylate A2, FutureNeuro and
Polyimide fibers.

A crack opening of 200 µm was chosen, where the majority of the tested optical cables behave in an
elastic manner. Except for the Polyimide fiber, where the measured and computed strain distributions
corresponding to a COD = 50 µm were plotted (Figure 9).

Figure 9 also shows the residuals, which are the differences between the measurements and the fits.
A good agreement between measured and computed distributions is observed. Indeed, the residuals
never exceeded 20% of the measured strain. As the Polyimide fiber’s strain distribution profiles
covered a relatively small part of the fiber, increased residuals at ±25 mm are observed (Figure 9b).
These residuals were not due to a weakness in the model but were most likely due to the aluminum
pieces glued at these positions that held the LVDT sensor. The exponential shape predicted by the
model is then confirmed. This forms a second argument of the relevance of the proposed analytical
model.

It then remains to prove the accuracy of the crack opening displacements deduced from the fits.
Figure 10 shows the relative difference between the crack openings measured with the optical fiber
and LVDT sensors.
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Figure 10. Estimated COD for different optical sensor configurations compared to those measured
by the LVDT sensors: (a) BRUsens V1, (b) SensoLux, (c) FutureNeuro, (d) Thorlabs, (e) Metal tube,
(f) Thin Optical fibers.

The LVDT sensors are used as reference sensors and therefore this difference can be considered as
an estimation error from the optical fiber measurement.

It can be seen that the error did not exceed the 20% in the COD range [50 µm; CODmax] for all the
cables and most varies around 2-5%. These values are consistent with the variability often observed
with concrete and prove the validity of the measured CODs.

Exceeding the CODmax, the relative error starts increasing progressively proving that the model
is no longer valid. Some types of optical cables (Figure 10b,c) figured a slower transition phase where
residuals increased at a lower rate and stayed localized around the crack location. For these types
of cables, i.e. the SensoLux and FutureNeuro cables, the relative error did not exceed 15% in the
post-elastic range.

For crack openings of less than 50 µm, the high increase in the relative errors were most likely due
to the limits in terms of strain accuracy at the level of the measurement system or the host material itself.
At the system level, the distributed strain measurements were characterized by a strain repeatability of
only ±20 µm/m. At the material level, multiple micro discontinuities are usually formed with residual
strains in the fracture process zone before the macro crack starts propagating. Thus, assuming the
presence of a crack surrounded by negligible strains in concrete is not totally true in the microcracking
stage. Despite these possible sources of errors, some optical fibers, like Thorlabs, were able to reach a
relative error of less than 10% at a crack opening of only 10 µm. Higher accuracy cannot be evaluated
using the reference LVDT sensor as it is limited to a precision of 1 µm.

As for the robust optical cables, Figure 11 shows the measured strain profiles for BRUsens V4
and V9 cables. These cables figure an additional PolyAmide (PA) outer sheath surrounding the Metal
tube. The crack-induced strain distribution takes a triangular form under different crack openings.
The corresponding fitted curves are not plotted in Figure 11 as they lead to high residual levels and
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high error in COD estimations. In the lead up to the mechanical strain transfer equation, and in order
to establish Equation (7), the Young modulus of the intermediate layers were neglected compared to
the Young modulus of the optical fiber (72 GPa). The fact that this assumption is not true in the case
of robust cables could be the reason behind their particular response, as they figure a stainless steel
layer characterized by a high Young modulus (200 GPa). Given the repeatability and consistency of
the simple triangular shape obtained from the strain profiles of BRUsens V4 and V9 cables, it is later
possible to propose a more adapted analytical model.

Figure 11. The measured strain spatial distribution under different crack openings from: (a) BRUsens
V4 and (b) V9 fiber optic lines.

5. Strain Lag Parameter Evaluation

As the strain lag parameter holds the different geometrical and mechanical properties of the
multilayer strain transfer system, monitoring its variations can help in understanding the response
of the system. Figure 12 shows the estimated strain lag parameter values from the fitting process for
different cables mounted on the surface of the specimens.

Figure 12. Variation of the strain lag parameter λ as a function of the measured COD for (a) all the
tested cables mounted on the surface of the specimens and for the (b) Polyimide fiber.

As expected from Equation (24), the strain lag parameter varied from one cable to another
since it depends on the constitution of the cable and the adherence between each two consecutive
layers. However, the same behavior is observed for all the cables: The strain lag parameter increased
during the microcracking stage and then stabilized until it reached an asymptotic value, which can
be considered as the real strain lag value for the cable. The strain lag parameters are comprised
between 20 m−1 and 60 m−1 (Figure 12a) except for the Polyimide cable where it varies around
260 m−1 (Figure 12b). The measured strain was not only proportional to COD but also to λ. This
means that the Polyimide fiber figures crack-induced strain distributions was 5 to 15 times higher
than the other tested cables, which allowed for the accurate detection of tiny crack propagation.
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Associating this fiber to a DFOS system with improved strain precision could lead to the detection of
submicron cracks.

Figure 13 shows the strain lag parameter given by the fit for embedded Thorlabs, BRUsens V1,
Metal tube, and SensoLux cable.

Figure 13. Comparison of the strain lag parameter λ for embedded and surface-mounted lines of (a)
Thorlabs, (b) BRUsens V1, (c) SensoLux, and (d) Metal tube.

On the same figure, the strain lag parameter values for surface lines are also plotted for
comparison. In all cases, the strain lag parameter values for embedded cables are lower than those for
surface-mounted cables.

According to Equations (23) and (24), the difference in strain lag parameter values for an
embedded and a surface mounted cable can be expressed as:

1
λ2

emb
− 1

λ2
surf

=
E f r2

f

2

[
1

km/crc
−
(

1
km/ara

+
1

ka/crc
+

1
Ga

ln
ra

rc

)]
(25)

Assuming a perfect bonding between the different layers, this difference reduces to: −
E f r2

f

2Ga
ln

ra

rc
.

As the latter can only have negative values, this means that the strain lag parameter of the embedded
cable is expected to be greater than the strain lag parameter of the surface mounted cable for perfect
bonding. Based on the tests results, the observed difference between the two insertion methods
must then be attributed to a case with an imperfect bonding between layers. Therefore, based on

Equation (17), λemb < λsurf implies:
1

km/crc
>

1
km/ara

+
1

ka/crc
. As a result, we can conclude that the

epoxy adhesive layer provides higher interfacial adhesion with the cable and the concrete material
compared to the one existing when the concrete and the cable are directly in contact. Moreover, in
the case of Metal tube and SensoLux cable (Figure 13c,d), this additional layer helped stabilizing the
cable/concrete interfacial adherence over a broader crack opening range.

The characteristics of the cables determined from wedge splitting tests are listed in Table 1.
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Table 1. Characteristics of the cables.

Strain Lag Dynamic Range

Polyimide 260 m−1 [50 µm; 80 µm]

Acrylate A1 32 m−1 [50 µm; 200 µm]

Acrylate A2 34 m−1 [50 µm; 200 µm]

Hytrel 44 m−1 [50 µm; 200 µm]

Metal tube 48 m−1 [50 µm; 160 µm]

Thorlabs 50 m−1 [50 µm; 200 µm]

BRUsens V1 58 m−1 [50 µm; 400 µm]

SensoLux 20 m−1 [50 µm; 900 µm]

FutureNeuro 15 m−1 [50 µm; 1500 µm]

The larger the strain lag parameter, the greater the sensitivity to crack propagation, but the smaller
the CODmax. The resolution and the dynamic range ([CODmin; CODmax]) of the cable thus depend
directly on the strain lag parameter. It appears that the strain lag parameter could be used as a control
parameter of the fit when its asymptotic value is known. Indeed, the best accuracy was obtained when
the strain lag was close to its asymptotic value. When it was significantly lower, the error increased
as deduced from the Metal tube and SensoLux embedded lines. This is due to the fact that a lower
value reflects the loss in adhesion between layers. Through more experimental tests, an empirical
relationship between the decrease in the strain lag parameter and the increase in the relative COD
estimation error can be established.

It is important to mention that additional wedge splitting tests were performed in [32] showing
that concrete hardening, epoxy glue aging, and bonding lengths can affect the strain lag parameter
values. These results put the spotlight on the importance of continuously estimating λ values during
the life of a structure and thus, the advantage of the established methodology compared to those
presented in the literature that assume a constant λ value for each cable.

6. Conclusions

We proposed a strain transfer model for multilayer systems that takes into account imperfect
interfacial bonding between layers. This analytical model includes the slip or discontinuities at the
interfaces by introducing an interfacial stiffness parameter. The key result of our calculations is that
the crack-induced strain distribution can take the form of:

εcrack(z) =
COD

2
λe−λ |z| (26)

which only depends on two parameters: COD and λ. The parameter COD represents the opening
of the crack. The parameter λ, or strain lag parameter, is related to the characteristics of the studied
system and depends on the mechanical properties of the different layers as well as the adhesion at
common interfaces. Therefore, its evolution provides information on the evolution of the optical
cable/host material system under study.

Having a single law of behavior covering a wide range of configurations is of undeniable interest
from an experimental point of view. Indeed, in many practical cases, analyzing the strain measurements
only consists on fitting the mechanical strain transfer function composed of the crack-induced strain
part (Equation (26)) and the elastic strain in the host material. If the fit is relevant, the crack opening
is obtained directly, without precise knowledge of the internal composition of the system and the
interactions between layers, and without the need to perform prior calibration tests.

In order to validate this model, wedge splitting tests were performed on specimens instrumented
with optical fiber cables on the surface and inside the concrete material, together with LVDT
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extensometers, which serve as reference sensors. The spatial strain distribution was measured using a
Rayleigh based interrogation unit and fitted using Equation (26) to estimate the crack opening and
strain lag parameter. Crack openings were compared to reference measurements, showing low relative
errors of 2% for some optical fibers and up to maximum crack opening of 200–1500 µm.

Optical cables embedded inside the concrete material showed less accurate results with relative
errors of 10%. Through monitoring the strain lag parameter variation, we were able to associate
this discrepancy in crack opening estimation accuracy to different levels of bonding at the interfaces.
The increased interfacial adhesion between the added adhesive layer and both the optical cable and
concrete material increases the strain lag coefficient and in some cases guarantees the steadiness and
stability of the interfacial bonding.

These results show that the distributed optical fiber strain sensing associated with the law of
behavior (Equation (26)) is an effective method for monitoring the opening of cracks in concrete
structures. It also allows the examination and monitoring of the condition of the optical cable inside
the concrete material throughout the life of the structure.

As a next step, the durability of the system should be examined. The behavior of the optical cable
under mechanical and environmental cyclic loading should be studied. The possibility of employing
optical cables with different levels of shear lag parameter and therefore different levels of sensitivity to
microcracks can be useful for investigating more complex cracking behaviors in novel materials like
ultra-high-performance fiber reinforced concrete (UHPFRC).
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