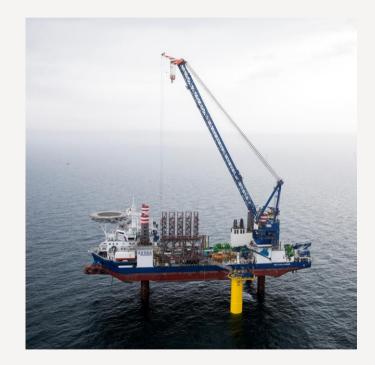
INFRASTAR

FATIGUE IN GROUTED CONNECTIONS FOR OFFSHORE WIND FOUNDATIONS

Aitor Arrospide Sanz, Structural Engineer, Wind dept. 1705

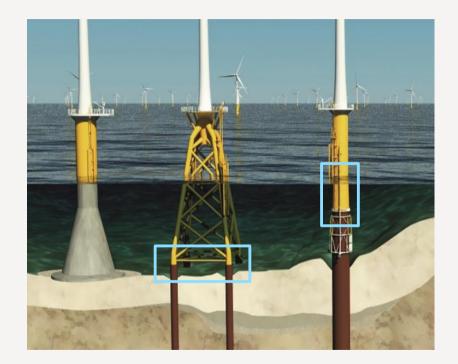
3 JULY 2019 COWI COMPANY PRESENTATION


COWI's imprint on the offshore wind market

2

SITE SPECIFIC CHALLENGES

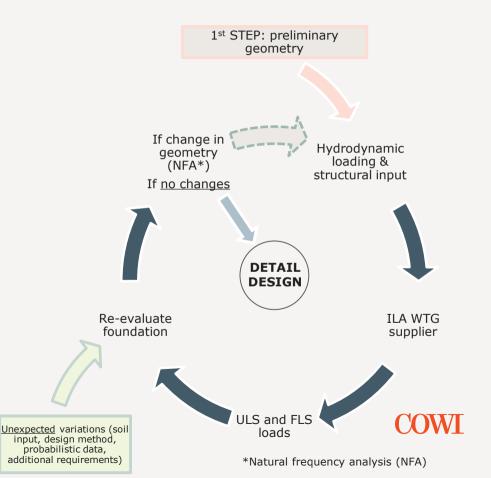
- > Soil characteristics
 - > Site investigation key to uncertainty level
 - > Data available benchmark investigations
 - New sites not as much experience
- > Environmental loading
 - > Quality and quantity of current & historical records
 - Adjustment of numerical models to site specific sea and wind states
 - > Extreme events and occurrence patterns



CHOICE OF FOUNDATIONS

Principal factors in decision making:

- > Water depth
- Soil condition
- Severity of environmental hazards (i.e. seismic events and liquefaction)
- Fabrication yard capabilities/proximity
- > Client preferences



LOAD ITERATIONS

Integrated load analysis, ILA

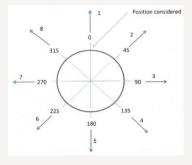
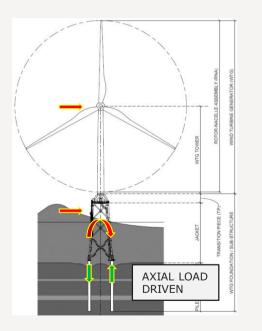
- The split between foundation designer and wind turbine generator (WTG) supplier requires an iterative design process.
- Different set-ups depending on the WTG supplier.
- Result, the ultimate limit state (ULS) and fatigue limit state (FLS) loads to consider for final detail design of the complete structure.

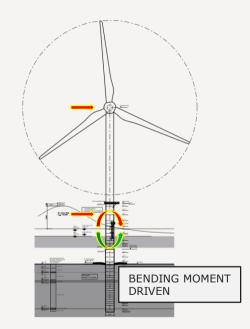
DESIGN LIFE AND FATIGUE LOADING

- FLS loads are the result of the combination of load case scenarios, scaled to the design life span of the infrastructure and limited to a probability of occurrence.
- Usually summarized in Markov Matrixes
- Simplistic representation by damage equivalent loads (DEL)
- Extreme events related to low fatigue cycles, might not be included in the long-term load considered.

Structure of Markov matrices where i=1N and j=1M

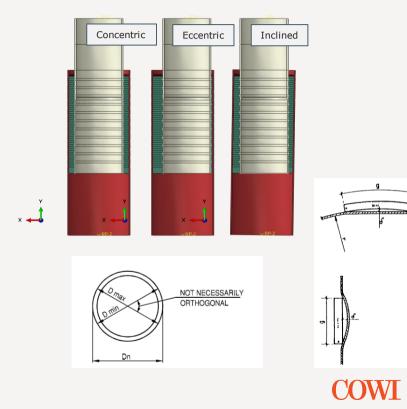
Loads projected to at least 6 directions


Table above would be replaced with axial loading for a jacket GC

GROUTED CONNECTIONS AS PRIMARY STRUCTURE

- Grouted connections transfers the loads to the support medium
 - > Jacket: driven piles at mudline interface (>2 connections)
 - MP-TP: monopile at the sea surface interface (1 connection)
- A failure can jeopardize the operability & integrity of the infrastructure
- > High risk item



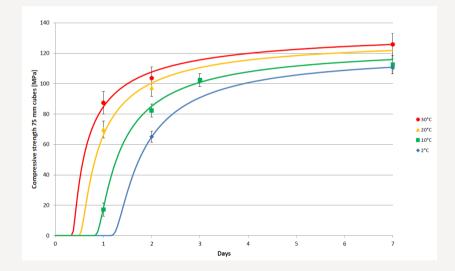
FUNCTIONALITY OF GROUTED CONNECTIONS

- Flexibility accommodating and correcting tolerances
 - Fabrication
 - Circumference
 - Out of roundness
 - Local roundness and straightness
 - > Installation
 - Pile/monopile out of verticality
 - Horizontal precision from driving (jackets)
- > Limited inspection/maintenance required

GROUT MATERIALS

> Very high strength no shrinkage materials

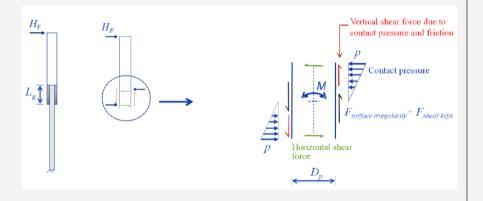
Description	Unit	Limitations
Nominal Bore (NB) for grout hoses/lines	inch	$NB \ge 2^{1}$
Grout annulus thickness ²⁾	mm	40 ≤ t ≤ 1000
Pumping length through 2" NB flexible hoses3)	m	L ≤ 150
Pumping length through 3" & 4" NB flexible hoses ³⁾	m	L ≤ 250
Pumping length through 5" NB flexible hoses ³⁾	m	L ≤ 435
Pumping elevation head using 2" to 5" NB flexible hoses ³⁾	m	H ≤ 20
Minimum application temperature (t _{app,min})	°C	04)
Maximum application temperature (t _{app.max})	°C	30

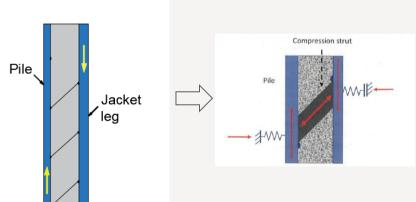

Table 5 Characteristic 28-days strengths for			acc. to EN 1990	
Material Property	Test Specimen	Curing/Testing Temperature [°C]	Notation	Characteristic Value [MPa]
	150 x 300 mm cylinders	20	feek	115.9
Compressive Strength	75 mm cubes	20	f _{ck}	127.4
	40 x 40 x 160 mm prisms	20	f _{ck,prisms}	108.91)
Flexural Strength	40 × 40 × 160 mm prisms	20	f _{ctk,fl}	14.9
Tensile Splitting Strength	150 x 300 mm cylinders	20	f _{ctk,spl}	7.3

HG6A1)	Autogenous shrinkage strain after 28 days curing	ASTM C1698	lays	-0.042 mm/m
HG6A1)	Autogenous shrinkage strain after 56 days curing			20°C
HG6A1)	Autogenous shrinkage strain after 91 days curing		20-0	-0.069 mm/m
HG6A1)	Autogenous shrinkage strain after 150 days curing			-0.077 mm/m

9

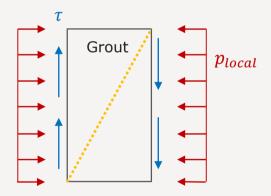
3 JULY 2019 COWI COMPANY PRESENTATION


Curing curves >



LOAD TRANSFER MECHANISM

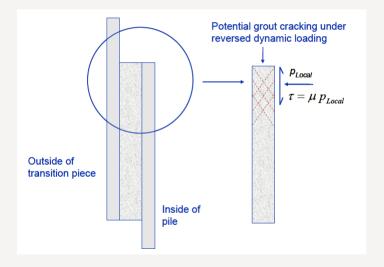
Monopile foundation: sectional forces transferred through contact pressure.


 Jacket foundation: sectional forces transferred through compression grout blocks.

FAILURE MECHANISMS

> **Monopile** foundation: shear stress dominated.

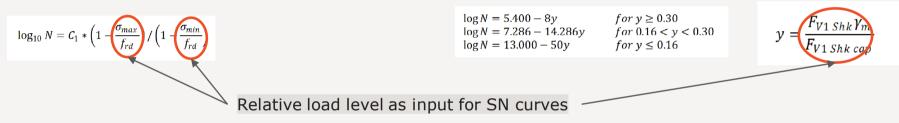
Jacket foundation: compression stress dominated. F_{V1Shk} Grout


>

FAILURE MECHANISMS

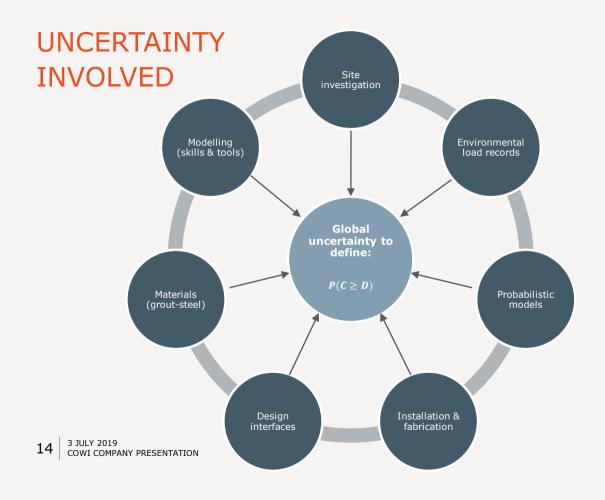
> **Monopile** foundation: shear stress dominated.

 Jacket foundation: compression stress dominated.



FLS ASSESSMENT

> Monopile GC


> Jacket GC

Safety level for GC FLS ----- Consequence of high uncertainty

	JACKET	MONOPILE
DFF	1.0	3.0
Ϋ́m.FLS	1.5	1.5

This can be lower depending on the reference

- Real life structures involve a high level of uncertainty.
- Feedback is needed. Am I right? Does it actually work?
- Theory must be benchmarked with empirical experience.
- Need to have structural health monitoring.

