

Innovation and Networking for Fatigue and Reliability Analysis of Structures – Training for Assessment of Risk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 676139

INFRASTAR H2020 - MSCA - ITN - ETN

 Innovation and Networking for Fatigue and Reliability Analysis of Structure – Training for Assessment of Risk

- 4 years: 01 May 2016 - 30 April 2020

- Budget: 3 161 113 €

Horizon 2020

European research programme started in 2014 for 7 years Calls with open topics

- Marie Skłodowska Curie Actions
 Provide grants for all stages of researchers' careers
- Innovative Training Networks
- European Training Networks

 Participants implement a joint research training programme

The ESRs Early Stage Researchers

Joint research training programme

Develop knowledge, expertise and skill for optimal and reliable management of structures

Fatigue of concrete

NFRASTAR Joint research training programme

Civil infrastructures are the basis of socio-economic wealth for modern societies.

FATIGUE ↔ **CONCRETE**

Limitations:

#1 Concrete structures are subjected to fatigue.

- · Where: bridge structures, tower/skyscraper, offshore structures, machine foundation, ...
- Relevance: Traffic increase, slender structures, offshore wind energy (foundation, grouting), reduce design and life cost

#2 Current technological means to measure fatigue are outdated, imprecise, and inappropriate.

#3 There is a lack of theoretical and practical developments of probabilistic methods.

Joint research training programme

Develop knowledge, expertise and skill for optimal and reliable management of structures

3 major challenges

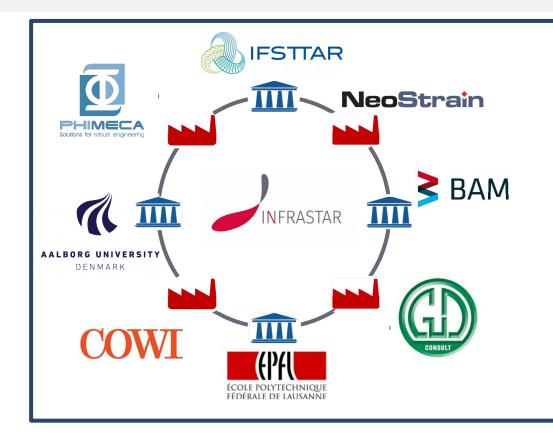
- To develop new relevant auscultation and monitoring systems
- To reduce and optimize the safety margin encountered in wind turbine and bridge design in the assessment of remaining strength
- To optimize design and life cycle costs

Fatigue of concrete

Joint research training programme

Innovation and Networking for Fatigue and Reliability
Analysis of Structures – Training for Assessment of Risk

- 3 scientific Work Packages
 - WP1: Monitoring and auscultation
 - WP2: Structural and action models
 - WP3: Reliability approaches for decision-making

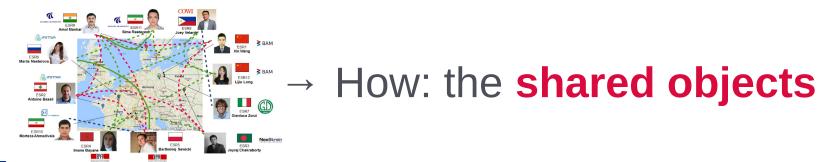

- WP4: Recruitment and training policy
- WP5: Management, dissemination, outreach and business opportunities

The network

8 beneficiaries

- 4 academic institutions
- 4 industries

1 advisory board with 6 members

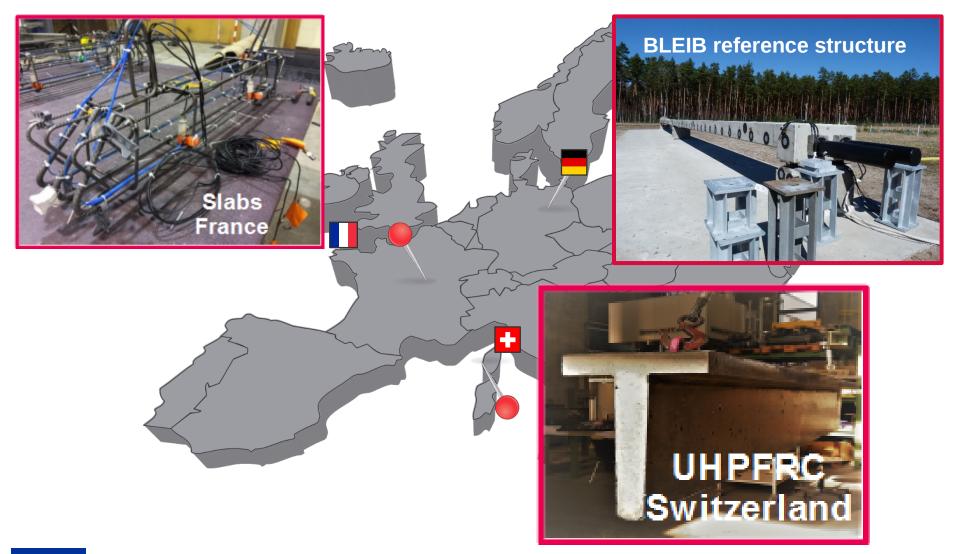


Collaboration

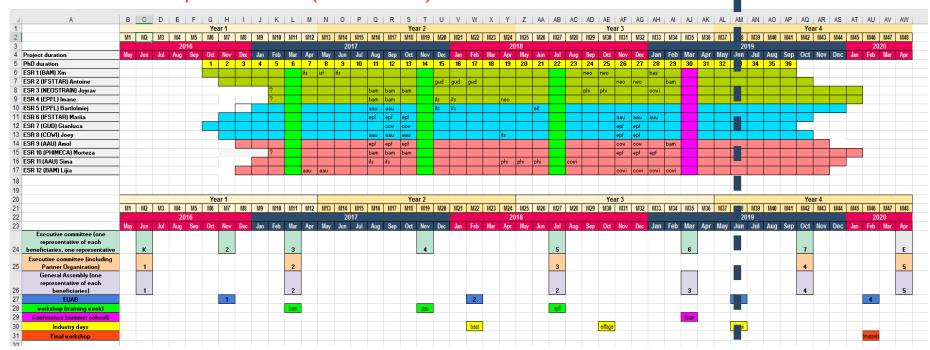
For each ESR: to make a personal contribution to knowledge

For each of them in **Infrastar**: to benefit of a **multi-disciplinarity** breeding ground to **amplify** their contribution

On site shared objects



Lab shared objects



Network-wide training activities

- 2 to 3 secondments for 2 to 3 months for each ESR.
- 3 training weeks: BAM (March 2017), EPFL (Nov. 2017), Aalborg (Jul. 2018).
- 3 implementation days: BAST (Feb. 2018), EIFFAGE (Oct. 2018), COWI (Jun. 2019).
- 1 winter school: IFSTTAR (Apr. 2019).
- 1 final workshop: Brussels (Feb. 2020).

Agenda

- 09:55 10:25: Challenge in the application of concrete design codes for floating wind turbine support structures
 - Simon Vasseur, Ideol, France
- 10:25 10:45: Structural Health Monitoring strategies for fatigue assessment of infrastructure components
 - Dr Jacob Egede Andersen, COWI, Denmark
- 10:45 11:05: Fatigue in grouted connections for offshore wind turbines
 - Aitor Arrospide Sanz, COWI, Denmark
- 11:05 11:30: Coffee break
- 11:30 11:40: Focus on WP3: Reliability approaches for decision making
 - Prof. John Dalsgaard Sorensen, AAU, Denmark
- 11:40 12:40 : Presentations by the Infrastar PhD students (WP3)
 - Amol Mankar (AAU), Morteza Ahmadivala (Phimeca), Sima Rastayesh (AAU), Lijia Long (AAU)
- 12:40 14:00: Lunch

Agenda

- 14:00 15:00: Poster session
 - Infrastar PhD students

- 15:00 15:45: Panel discussion
 - Moderator: Claus Kramhoft, COWI, Denmark
- 15:45 16:45: Speed networking
- 16:45 16:50: Conclusion

• 16:50 − 18:15: Cocktail & Networking

Innovation and Networking for Fatigue and Reliability **Analysis of Structures – Training for Assessment of Risk**

Have a great implementation day

Odile ABRAHAM odile.abraham@ifsttar.fr

Hakim FERRIA hakim.ferria@ifsttar.fr

infrastar@ifsttar.fr

http://infrastar.eu Stay tuned

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 676139

