

Innovation and Networking for Fatigue and Reliability Analysis of Structures – Training for Assessment of Risk

Lifetime Cyclic Behavior of Offshore Wind Turbine Foundations

Gianluca Zorzi

GuD Geotechnik und Dynamik Consult Berlin, Germany

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 676139

18/10/2018

PhD Researcher at GuD Geotechnik und Dynamik Consult, *Berlin, Germany*

- Thesis: Lifetime cyclic behavior of offshore wind turbine foundations
- International Master Course in Civil Engineering University of Bologna, Italy
 - Thesis: Numerical and experimental long term cyclic behavior of soil
- BSc at University of Padova
 - Thesis: Cyclic behavior of granular material

Wind turbine foundation

- Slender and Dynamic structure
- Vulnerable to cyclic loading
- Change in Soilstructureinteraction

Geotechnical Design of offshore structures

Static design (time 0):

- Bearing capacity
 - Axial and lateral loads
- Stiffness
- Damping

- Dynamic design (0 to 25 years +) : performance under cyclic loading

 - Decrease in bearing capacity? ——> Stability Analysis
 - Change in Soil Stiffness?
 - Change in Soil damping?

Fatigue Analysis

INFRASTAR

Design conditions Lifetime

Real Loading

Cyclic behaviour of soil

Basic knowledge

- 1. Grains + Water
- 2. Strength=force
 - between the grain
- 3. Soil is not linear

Cyclic behavior of soil Phase 1. During storm event Phase 2. After the storm event

[1] https://www.geological-digressions.com/liquefactionmore-than-an-interesting-phenomenon/

Cyclic behaviour of soil

Phase 1:

- 1. Undrained conditions
- 2. Increase in water pressure
- Loosing strength and stiffness
- 4. Accumulation of deformations

Phase 1 = Softening (Soil degradation)

Cyclic behaviour of soil

Phase 2

- 1. Consolidation
- 2. Dissipation of pore pressure
- Better locking between the grains
- 4. Increasing in strength and stiffness
 - Not for liquefaction

Phase 2 = Stiffening (Soil hardening)

- Cyclic behavior of soil is challenging:
 - Softening, stiffening, the micromechanical behavior is very important!!
- The methods to predict the cyclic loading is just based on lab tests and theories:
 - Need of monitoring data focusing on soil behavior
 - To enable a better understanding of the foundation performance
 - To understand the limitations
 - To reduce conservatism

Thank you for your attention

More information on INFRASTAR website http://infrastar.eu or infrastar@ifsttar.fr

- Stay tuned:
- Facebook https://www.facebook.com/infrastar.itn/
- Twitter https://twitter.com/infrastar_itn
- LinkedIn https://www.linkedin.com/in/infrastar-itn
- ResearchGate https://www.researchgate.net/profile/Infrastar_Itn

